Processing math: 100%

fairXiv Pronounced fair • kive

16737 latest Fairness/Ethics + ML/AI papers

Nteasee: A mixed methods study of expert and general population perspectives on deploying AI for health in African countries

Mercy Nyamewaa Asiedu, Iskandar Haykel, Awa Dieng, Kerrie Kauer, Tousif Ahmed, Florence Ofori, Charisma Chan, Stephen Pfohl, Negar Rostamzadeh, Katherine Heller

arXiv:2409.12197v3 »Full PDF »

added illustrative figures

Artificial Intelligence (AI) for health has the potential to significantly change and improve healthcare. However in most African countries, identifying culturally and contextually attuned approaches for deploying these solutions is not well understood. To bridge this gap, we conduct a qualitative study to investigate the best practices, fairness indicators, and potential biases to mitigate when deploying AI for health in African countries, as well as explore opportunities where artificial intelligence could make a positive impact in health. We used a mixed methods approach combining in-depth interviews (IDIs) and surveys. We conduct 1.5-2 hour long IDIs with 50 experts in health, policy, and AI across 17 countries, and through an inductive approach we conduct a qualitative thematic analysis on expert IDI responses. We administer a blinded 30-minute survey with case studies to 672 general population participants across 5 countries in Africa and analyze responses on quantitative scales, statistically comparing responses by country, age, gender, and level of familiarity with AI. We thematically summarize open-ended responses from surveys. Our results find generally positive attitudes, high levels of trust, accompanied by moderate levels of concern among general population participants for AI usage for health in Africa. This contrasts with expert responses, where major themes revolved around trust/mistrust, ethical concerns, and systemic barriers to integration, among others. This work presents the first-of-its-kind qualitative research study of the potential of AI for health in Africa from an algorithmic fairness angle, with perspectives from both experts and the general population. We hope that this work guides policymakers and drives home the need for further research and the inclusion of general population perspectives in decision-making around AI usage.Abstract

CDR: Customizable Density Ratios of Strong-over-weak LLMs for Preference Annotation

Guangxuan Xu, Kai Xu, Shivchander Sudalairaj, Hao Wang, Akash Srivastava

arXiv:2411.02481v2 »Full PDF »
Preference tuning of large language models (LLMs) relies on high-quality human preference data, which is often expensive and time-consuming to gather. While existing methods can use trained reward models or proprietary model as judges for preference annotation, they have notable drawbacks: training reward models remain dependent on initial human data, and using proprietary model imposes license restrictions that inhibits commercial usage. In this paper, we introduce customized density ratio (CDR), a training-free and highly effective method that leverages off-the-shelf LLMs for preference data annotation. Our approach uses the log-density ratio between a better-aligned LLM and a less aligned LLM as a reward signal. We explores 221 different LLMs pairs and empirically demonstrate that increasing the performance gap between paired LLMs correlates with better reward generalization. Furthermore, we show that tailoring the density ratio reward function with specific criteria and preference exemplars enhances performance across domains and within target areas. In our experiment using density ratio from a pair of Mistral-7B models, CDR achieves a RewardBench score of 82.6, outperforming the best trained reward functions from same model class and demonstrating competitive performance against SoTA models in Safety (91.0) and Reasoning (88.0) domains. We use CDR to annotate an on-policy preference dataset with which we preference tune Llama-3-8B-Instruct with SimPO. Using reward signals from two relatively weak models, our approach pushes Llama-3-8B to achieve a 37.4% (+15.1%) win rate on ArenaHard and a 40.7% (+17.8%) win rate on Length-Controlled AlpacaEval 2.0, along with a score of 8.0 on MT-Bench.Abstract

A Primer on Word Embeddings: AI Techniques for Text Analysis in Social Work

Brian E. Perron, Kelley A. Rivenburgh, Bryan G. Victor, Zia Qi, Hui Luan

arXiv:2411.07156v1 »Full PDF »

37 pages, 3 figures

Word embeddings represent a transformative technology for analyzing text data in social work research, offering sophisticated tools for understanding case notes, policy documents, research literature, and other text-based materials. This methodological paper introduces word embeddings to social work researchers, explaining how these mathematical representations capture meaning and relationships in text data more effectively than traditional keyword-based approaches. We discuss fundamental concepts, technical foundations, and practical applications, including semantic search, clustering, and retrieval augmented generation. The paper demonstrates how embeddings can enhance research workflows through concrete examples from social work practice, such as analyzing case notes for housing instability patterns and comparing social work licensing examinations across languages. While highlighting the potential of embeddings for advancing social work research, we acknowledge limitations including information loss, training data constraints, and potential biases. We conclude that successfully implementing embedding technologies in social work requires developing domain-specific models, creating accessible tools, and establishing best practices aligned with social work's ethical principles. This integration can enhance our ability to analyze complex patterns in text data while supporting more effective services and interventions.Abstract

Hire Me or Not? Examining Language Model's Behavior with Occupation Attributes

Damin Zhang, Yi Zhang, Geetanjali Bihani, Julia Rayz

arXiv:2405.06687v2 »Full PDF »

WIP

With the impressive performance in various downstream tasks, large language models (LLMs) have been widely integrated into production pipelines, like recruitment and recommendation systems. A known issue of models trained on natural language data is the presence of human biases, which can impact the fairness of the system. This paper investigates LLMs' behavior with respect to gender stereotypes, in the context of occupation decision making. Our framework is designed to investigate and quantify the presence of gender stereotypes in LLMs' behavior via multi-round question answering. Inspired by prior works, we construct a dataset by leveraging a standard occupation classification knowledge base released by authoritative agencies. We tested three LLMs (RoBERTa-large, GPT-3.5-turbo, and Llama2-70b-chat) and found that all models exhibit gender stereotypes analogous to human biases, but with different preferences. The distinct preferences of GPT-3.5-turbo and Llama2-70b-chat may imply the current alignment methods are insufficient for debiasing and could introduce new biases contradicting the traditional gender stereotypes.Abstract

SCAR: Sparse Conditioned Autoencoders for Concept Detection and Steering in LLMs

Ruben Härle, Felix Friedrich, Manuel Brack, Björn Deiseroth, Patrick Schramowski, Kristian Kersting

arXiv:2411.07122v1 »Full PDF »
Large Language Models (LLMs) have demonstrated remarkable capabilities in generating human-like text, but their output may not be aligned with the user or even produce harmful content. This paper presents a novel approach to detect and steer concepts such as toxicity before generation. We introduce the Sparse Conditioned Autoencoder (SCAR), a single trained module that extends the otherwise untouched LLM. SCAR ensures full steerability, towards and away from concepts (e.g., toxic content), without compromising the quality of the model's text generation on standard evaluation benchmarks. We demonstrate the effective application of our approach through a variety of concepts, including toxicity, safety, and writing style alignment. As such, this work establishes a robust framework for controlling LLM generations, ensuring their ethical and safe deployment in real-world applications.Abstract

Online Mirror Descent for Tchebycheff Scalarization in Multi-Objective Optimization

Meitong Liu, Xiaoyuan Zhang, Chulin Xie, Kate Donahue, Han Zhao

arXiv:2410.21764v2 »Full PDF »

26 pages, 7 figures, 2 tables

The goal of multi-objective optimization (MOO) is to learn under multiple, potentially conflicting, objectives. One widely used technique to tackle MOO is through linear scalarization, where one fixed preference vector is used to combine the objectives into a single scalar value for optimization. However, recent work (Hu et al., 2024) has shown linear scalarization often fails to capture the non-convex regions of the Pareto Front, failing to recover the complete set of Pareto optimal solutions. In light of the above limitations, this paper focuses on Tchebycheff scalarization that optimizes for the worst-case objective. In particular, we propose an online mirror descent algorithm for Tchebycheff scalarization, which we call OMD-TCH. We show that OMD-TCH enjoys a convergence rate of O(logm/T) where m is the number of objectives and T is the number of iteration rounds. We also propose a novel adaptive online-to-batch conversion scheme that significantly improves the practical performance of OMD-TCH while maintaining the same convergence guarantees. We demonstrate the effectiveness of OMD-TCH and the adaptive conversion scheme on both synthetic problems and federated learning tasks under fairness constraints, showing state-of-the-art performance.Abstract

MAN TruckScenes: A multimodal dataset for autonomous trucking in diverse conditions

Felix Fent, Fabian Kuttenreich, Florian Ruch, Farija Rizwin, Stefan Juergens, Lorenz Lechermann, Christian Nissler, Andrea Perl, Ulrich Voll, Min Yan, Markus Lienkamp

arXiv:2407.07462v2 »Full PDF »

Accepted to NeurIPS 2024 Datasets and Benchmarks Track

Autonomous trucking is a promising technology that can greatly impact modern logistics and the environment. Ensuring its safety on public roads is one of the main duties that requires an accurate perception of the environment. To achieve this, machine learning methods rely on large datasets, but to this day, no such datasets are available for autonomous trucks. In this work, we present MAN TruckScenes, the first multimodal dataset for autonomous trucking. MAN TruckScenes allows the research community to come into contact with truck-specific challenges, such as trailer occlusions, novel sensor perspectives, and terminal environments for the first time. It comprises more than 740 scenes of 20s each within a multitude of different environmental conditions. The sensor set includes 4 cameras, 6 lidar, 6 radar sensors, 2 IMUs, and a high-precision GNSS. The dataset's 3D bounding boxes were manually annotated and carefully reviewed to achieve a high quality standard. Bounding boxes are available for 27 object classes, 15 attributes, and a range of more than 230m. The scenes are tagged according to 34 distinct scene tags, and all objects are tracked throughout the scene to promote a wide range of applications. Additionally, MAN TruckScenes is the first dataset to provide 4D radar data with 360{\deg} coverage and is thereby the largest radar dataset with annotated 3D bounding boxes. Finally, we provide extensive dataset analysis and baseline results. The dataset, development kit, and more are available online.Abstract

Fair Generalized Linear Mixed Models

Jan Pablo Burgard, João Vitor Pamplona

arXiv:2405.09273v3 »Full PDF »

25 pages, 12 figures. arXiv admin note: text overlap with arXiv:2405.06433

When using machine learning for automated prediction, it is important to account for fairness in the prediction. Fairness in machine learning aims to ensure that biases in the data and model inaccuracies do not lead to discriminatory decisions. E.g., predictions from fair machine learning models should not discriminate against sensitive variables such as sexual orientation and ethnicity. The training data often in obtained from social surveys. In social surveys, oftentimes the data collection process is a strata sampling, e.g. due to cost restrictions. In strata samples, the assumption of independence between the observation is not fulfilled. Hence, if the machine learning models do not account for the strata correlations, the results may be biased. Especially high is the bias in cases where the strata assignment is correlated to the variable of interest. We present in this paper an algorithm that can handle both problems simultaneously, and we demonstrate the impact of stratified sampling on the quality of fair machine learning predictions in a reproducible simulation study.Abstract

BehaviorGPT: Smart Agent Simulation for Autonomous Driving with Next-Patch Prediction

Zikang Zhou, Haibo Hu, Xinhong Chen, Jianping Wang, Nan Guan, Kui Wu, Yung-Hui Li, Yu-Kai Huang, Chun Jason Xue

arXiv:2405.17372v3 »Full PDF »

NeurIPS 2024

Simulating realistic behaviors of traffic agents is pivotal for efficiently validating the safety of autonomous driving systems. Existing data-driven simulators primarily use an encoder-decoder architecture to encode the historical trajectories before decoding the future. However, the heterogeneity between encoders and decoders complicates the models, and the manual separation of historical and future trajectories leads to low data utilization. Given these limitations, we propose BehaviorGPT, a homogeneous and fully autoregressive Transformer designed to simulate the sequential behavior of multiple agents. Crucially, our approach discards the traditional separation between "history" and "future" by modeling each time step as the "current" one for motion generation, leading to a simpler, more parameter- and data-efficient agent simulator. We further introduce the Next-Patch Prediction Paradigm (NP3) to mitigate the negative effects of autoregressive modeling, in which models are trained to reason at the patch level of trajectories and capture long-range spatial-temporal interactions. Despite having merely 3M model parameters, BehaviorGPT won first place in the 2024 Waymo Open Sim Agents Challenge with a realism score of 0.7473 and a minADE score of 1.4147, demonstrating its exceptional performance in traffic agent simulation.Abstract

A neural-network based anomaly detection system and a safety protocol to protect vehicular network

Marco Franceschini

arXiv:2411.07013v1 »Full PDF »

Master's thesis 2023-2024

This thesis addresses the use of Cooperative Intelligent Transport Systems (CITS) to improve road safety and efficiency by enabling vehicle-to-vehicle communication, highlighting the importance of secure and accurate data exchange. To ensure safety, the thesis proposes a Machine Learning-based Misbehavior Detection System (MDS) using Long Short-Term Memory (LSTM) networks to detect and mitigate incorrect or misleading messages within vehicular networks. Trained offline on the VeReMi dataset, the detection model is tested in real-time within a platooning scenario, demonstrating that it can prevent nearly all accidents caused by misbehavior by triggering a defense protocol that dissolves the platoon if anomalies are detected. The results show that while the system can accurately detect general misbehavior, it struggles to label specific types due to varying traffic conditions, implying the difficulty of creating a universally adaptive protocol. However, the thesis suggests that with more data and further refinement, this MDS could be implemented in real-world CITS, enhancing driving safety by mitigating risks from misbehavior in cooperative driving networks.Abstract