Processing math: 100%

fairXiv Pronounced fair • kive

16737 latest Fairness/Ethics + ML/AI papers

Less Discriminatory Alternative and Interpretable XGBoost Framework for Binary Classification

Andrew Pangia, Agus Sudjianto, Aijun Zhang, Taufiquar Khan

arXiv:2410.19067v1 »Full PDF »
Fair lending practices and model interpretability are crucial concerns in the financial industry, especially given the increasing use of complex machine learning models. In response to the Consumer Financial Protection Bureau's (CFPB) requirement to protect consumers against unlawful discrimination, we introduce LDA-XGB1, a novel less discriminatory alternative (LDA) machine learning model for fair and interpretable binary classification. LDA-XGB1 is developed through biobjective optimization that balances accuracy and fairness, with both objectives formulated using binning and information value. It leverages the predictive power and computational efficiency of XGBoost while ensuring inherent model interpretability, including the enforcement of monotonic constraints. We evaluate LDA-XGB1 on two datasets: SimuCredit, a simulated credit approval dataset, and COMPAS, a real-world recidivism prediction dataset. Our results demonstrate that LDA-XGB1 achieves an effective balance between predictive accuracy, fairness, and interpretability, often outperforming traditional fair lending models. This approach equips financial institutions with a powerful tool to meet regulatory requirements for fair lending while maintaining the advantages of advanced machine learning techniques.Abstract

PiML Toolbox for Interpretable Machine Learning Model Development and Diagnostics

Agus Sudjianto, Aijun Zhang, Zebin Yang, Yu Su, Ningzhou Zeng

arXiv:2305.04214v3 »Full PDF »
PiML (read π-ML, /`pai`em`el/) is an integrated and open-access Python toolbox for interpretable machine learning model development and model diagnostics. It is designed with machine learning workflows in both low-code and high-code modes, including data pipeline, model training and tuning, model interpretation and explanation, and model diagnostics and comparison. The toolbox supports a growing list of interpretable models (e.g. GAM, GAMI-Net, XGB1/XGB2) with inherent local and/or global interpretability. It also supports model-agnostic explainability tools (e.g. PFI, PDP, LIME, SHAP) and a powerful suite of model-agnostic diagnostics (e.g. weakness, reliability, robustness, resilience, fairness). Integration of PiML models and tests to existing MLOps platforms for quality assurance are enabled by flexible high-code APIs. Furthermore, PiML toolbox comes with a comprehensive user guide and hands-on examples, including the applications for model development and validation in banking. The project is available at https://github.com/SelfExplainML/PiML-Toolbox.Abstract

Designing Inherently Interpretable Machine Learning Models

Agus Sudjianto, Aijun Zhang

arXiv:2111.01743v1 »Full PDF »

arXiv admin note: text overlap with arXiv:2011.04041

Interpretable machine learning (IML) becomes increasingly important in highly regulated industry sectors related to the health and safety or fundamental rights of human beings. In general, the inherently IML models should be adopted because of their transparency and explainability, while black-box models with model-agnostic explainability can be more difficult to defend under regulatory scrutiny. For assessing inherent interpretability of a machine learning model, we propose a qualitative template based on feature effects and model architecture constraints. It provides the design principles for high-performance IML model development, with examples given by reviewing our recent works on ExNN, GAMI-Net, SIMTree, and the Aletheia toolkit for local linear interpretability of deep ReLU networks. We further demonstrate how to design an interpretable ReLU DNN model with evaluation of conceptual soundness for a real case study of predicting credit default in home lending. We hope that this work will provide a practical guide of developing inherently IML models in high risk applications in banking industry, as well as other sectors.Abstract

Ethics and Governance of Artificial Intelligence: Evidence from a Survey of Machine Learning Researchers

Baobao Zhang, Markus Anderljung, Lauren Kahn, Noemi Dreksler, Michael C. Horowitz, Allan Dafoe

arXiv:2105.02117v1 »Full PDF »
Machine learning (ML) and artificial intelligence (AI) researchers play an important role in the ethics and governance of AI, including taking action against what they perceive to be unethical uses of AI (Belfield, 2020; Van Noorden, 2020). Nevertheless, this influential group's attitudes are not well understood, which undermines our ability to discern consensuses or disagreements between AI/ML researchers. To examine these researchers' views, we conducted a survey of those who published in the top AI/ML conferences (N = 524). We compare these results with those from a 2016 survey of AI/ML researchers (Grace, Salvatier, Dafoe, Zhang, & Evans, 2018) and a 2018 survey of the US public (Zhang & Dafoe, 2020). We find that AI/ML researchers place high levels of trust in international organizations and scientific organizations to shape the development and use of AI in the public interest; moderate trust in most Western tech companies; and low trust in national militaries, Chinese tech companies, and Facebook. While the respondents were overwhelmingly opposed to AI/ML researchers working on lethal autonomous weapons, they are less opposed to researchers working on other military applications of AI, particularly logistics algorithms. A strong majority of respondents think that AI safety research should be prioritized and that ML institutions should conduct pre-publication review to assess potential harms. Being closer to the technology itself, AI/ML re-searchers are well placed to highlight new risks and develop technical solutions, so this novel attempt to measure their attitudes has broad relevance. The findings should help to improve how researchers, private sector executives, and policymakers think about regulations, governance frameworks, guiding principles, and national and international governance strategies for AI.Abstract

Deep Learning for Real Time Crime Forecasting

Bao Wang, Duo Zhang, Duanhao Zhang, P. Jeffery Brantingham, Andrea L. Bertozzi

arXiv:1707.03340v1 »Full PDF »

4 pages, 6 figures, NOLTA, 2017

Accurate real time crime prediction is a fundamental issue for public safety, but remains a challenging problem for the scientific community. Crime occurrences depend on many complex factors. Compared to many predictable events, crime is sparse. At different spatio-temporal scales, crime distributions display dramatically different patterns. These distributions are of very low regularity in both space and time. In this work, we adapt the state-of-the-art deep learning spatio-temporal predictor, ST-ResNet [Zhang et al, AAAI, 2017], to collectively predict crime distribution over the Los Angeles area. Our models are two staged. First, we preprocess the raw crime data. This includes regularization in both space and time to enhance predictable signals. Second, we adapt hierarchical structures of residual convolutional units to train multi-factor crime prediction models. Experiments over a half year period in Los Angeles reveal highly accurate predictive power of our models.Abstract

Hire Me or Not? Examining Language Model's Behavior with Occupation Attributes

Damin Zhang, Yi Zhang, Geetanjali Bihani, Julia Rayz

arXiv:2405.06687v2 »Full PDF »

WIP

With the impressive performance in various downstream tasks, large language models (LLMs) have been widely integrated into production pipelines, like recruitment and recommendation systems. A known issue of models trained on natural language data is the presence of human biases, which can impact the fairness of the system. This paper investigates LLMs' behavior with respect to gender stereotypes, in the context of occupation decision making. Our framework is designed to investigate and quantify the presence of gender stereotypes in LLMs' behavior via multi-round question answering. Inspired by prior works, we construct a dataset by leveraging a standard occupation classification knowledge base released by authoritative agencies. We tested three LLMs (RoBERTa-large, GPT-3.5-turbo, and Llama2-70b-chat) and found that all models exhibit gender stereotypes analogous to human biases, but with different preferences. The distinct preferences of GPT-3.5-turbo and Llama2-70b-chat may imply the current alignment methods are insufficient for debiasing and could introduce new biases contradicting the traditional gender stereotypes.Abstract

Online Mirror Descent for Tchebycheff Scalarization in Multi-Objective Optimization

Meitong Liu, Xiaoyuan Zhang, Chulin Xie, Kate Donahue, Han Zhao

arXiv:2410.21764v2 »Full PDF »

26 pages, 7 figures, 2 tables

The goal of multi-objective optimization (MOO) is to learn under multiple, potentially conflicting, objectives. One widely used technique to tackle MOO is through linear scalarization, where one fixed preference vector is used to combine the objectives into a single scalar value for optimization. However, recent work (Hu et al., 2024) has shown linear scalarization often fails to capture the non-convex regions of the Pareto Front, failing to recover the complete set of Pareto optimal solutions. In light of the above limitations, this paper focuses on Tchebycheff scalarization that optimizes for the worst-case objective. In particular, we propose an online mirror descent algorithm for Tchebycheff scalarization, which we call OMD-TCH. We show that OMD-TCH enjoys a convergence rate of O(logm/T) where m is the number of objectives and T is the number of iteration rounds. We also propose a novel adaptive online-to-batch conversion scheme that significantly improves the practical performance of OMD-TCH while maintaining the same convergence guarantees. We demonstrate the effectiveness of OMD-TCH and the adaptive conversion scheme on both synthetic problems and federated learning tasks under fairness constraints, showing state-of-the-art performance.Abstract

SIESEF-FusionNet: Spatial Inter-correlation Enhancement and Spatially-Embedded Feature Fusion Network for LiDAR Point Cloud Semantic Segmentation

Jiale Chen, Fei Xia, Jianliang Mao, Haoping Wang, Chuanlin Zhang

arXiv:2411.06991v1 »Full PDF »

9 pages, 4 figures

The ambiguity at the boundaries of different semantic classes in point cloud semantic segmentation often leads to incorrect decisions in intelligent perception systems, such as autonomous driving. Hence, accurate delineation of the boundaries is crucial for improving safety in autonomous driving. A novel spatial inter-correlation enhancement and spatially-embedded feature fusion network (SIESEF-FusionNet) is proposed in this paper, enhancing spatial inter-correlation by combining inverse distance weighting and angular compensation to extract more beneficial spatial information without causing redundancy. Meanwhile, a new spatial adaptive pooling module is also designed, embedding enhanced spatial information into semantic features for strengthening the context-awareness of semantic features. Experimental results demonstrate that 83.7% mIoU and 97.8% OA are achieved by SIESEF-FusionNet on the Toronto3D dataset, with performance superior to other baseline methods. A value of 61.1% mIoU is reached on the semanticKITTI dataset, where a marked improvement in segmentation performance is observed. In addition, the effectiveness and plug-and-play capability of the proposed modules are further verified through ablation studies.Abstract

Revisiting, Benchmarking and Understanding Unsupervised Graph Domain Adaptation

Meihan Liu, Zhen Zhang, Jiachen Tang, Jiajun Bu, Bingsheng He, Sheng Zhou

arXiv:2407.11052v2 »Full PDF »

Accepted by NeurIPS-24

Unsupervised Graph Domain Adaptation (UGDA) involves the transfer of knowledge from a label-rich source graph to an unlabeled target graph under domain discrepancies. Despite the proliferation of methods designed for this emerging task, the lack of standard experimental settings and fair performance comparisons makes it challenging to understand which and when models perform well across different scenarios. To fill this gap, we present the first comprehensive benchmark for unsupervised graph domain adaptation named GDABench, which encompasses 16 algorithms across 5 datasets with 74 adaptation tasks. Through extensive experiments, we observe that the performance of current UGDA models varies significantly across different datasets and adaptation scenarios. Specifically, we recognize that when the source and target graphs face significant distribution shifts, it is imperative to formulate strategies to effectively address and mitigate graph structural shifts. We also find that with appropriate neighbourhood aggregation mechanisms, simple GNN variants can even surpass state-of-the-art UGDA baselines. To facilitate reproducibility, we have developed an easy-to-use library PyGDA for training and evaluating existing UGDA methods, providing a standardized platform in this community. Our source codes and datasets can be found at: https://github.com/pygda-team/pygda.Abstract

LongSafetyBench: Long-Context LLMs Struggle with Safety Issues

Mianqiu Huang, Xiaoran Liu, Shaojun Zhou, Mozhi Zhang, Chenkun Tan, Pengyu Wang, Qipeng Guo, Zhe Xu, Linyang Li, Zhikai Lei, Linlin Li, Qun Liu, Yaqian Zhou, Xipeng Qiu, Xuanjing Huang

arXiv:2411.06899v1 »Full PDF »
With the development of large language models (LLMs), the sequence length of these models continues to increase, drawing significant attention to long-context language models. However, the evaluation of these models has been primarily limited to their capabilities, with a lack of research focusing on their safety. Existing work, such as ManyShotJailbreak, has to some extent demonstrated that long-context language models can exhibit safety concerns. However, the methods used are limited and lack comprehensiveness. In response, we introduce \textbf{LongSafetyBench}, the first benchmark designed to objectively and comprehensively evaluate the safety of long-context models. LongSafetyBench consists of 10 task categories, with an average length of 41,889 words. After testing eight long-context language models on LongSafetyBench, we found that existing models generally exhibit insufficient safety capabilities. The proportion of safe responses from most mainstream long-context LLMs is below 50\%. Moreover, models' safety performance in long-context scenarios does not always align with that in short-context scenarios. Further investigation revealed that long-context models tend to overlook harmful content within lengthy texts. We also proposed a simple yet effective solution, allowing open-source models to achieve performance comparable to that of top-tier closed-source models. We believe that LongSafetyBench can serve as a valuable benchmark for evaluating the safety capabilities of long-context language models. We hope that our work will encourage the broader community to pay attention to the safety of long-context models and contribute to the development of solutions to improve the safety of long-context LLMs.Abstract