fairXiv Pronounced fair • kive

16737 latest Fairness/Ethics + ML/AI papers

The RoboDepth Challenge: Methods and Advancements Towards Robust Depth Estimation

Lingdong Kong, Yaru Niu, Shaoyuan Xie, Hanjiang Hu, Lai Xing Ng, Benoit R. Cottereau, Liangjun Zhang, Hesheng Wang, Wei Tsang Ooi, Ruijie Zhu, Ziyang Song, Li Liu, Tianzhu Zhang, Jun Yu, Mohan Jing, Pengwei Li, Xiaohua Qi, Cheng Jin, Yingfeng Chen, Jie Hou, Jie Zhang, Zhen Kan, Qiang Ling, Liang Peng, Minglei Li, Di Xu, Changpeng Yang, Yuanqi Yao, Gang Wu, Jian Kuai, Xianming Liu, Junjun Jiang, Jiamian Huang, Baojun Li, Jiale Chen, Shuang Zhang, Sun Ao, Zhenyu Li, Runze Chen, Haiyong Luo, Fang Zhao, Jingze Yu

arXiv:2307.15061v2 »Full PDF »

Technical Report; 65 pages, 34 figures, 24 tables; Code at https://github.com/ldkong1205/RoboDepth

Accurate depth estimation under out-of-distribution (OoD) scenarios, such as adverse weather conditions, sensor failure, and noise contamination, is desirable for safety-critical applications. Existing depth estimation systems, however, suffer inevitably from real-world corruptions and perturbations and are struggled to provide reliable depth predictions under such cases. In this paper, we summarize the winning solutions from the RoboDepth Challenge -- an academic competition designed to facilitate and advance robust OoD depth estimation. This challenge was developed based on the newly established KITTI-C and NYUDepth2-C benchmarks. We hosted two stand-alone tracks, with an emphasis on robust self-supervised and robust fully-supervised depth estimation, respectively. Out of more than two hundred participants, nine unique and top-performing solutions have appeared, with novel designs ranging from the following aspects: spatial- and frequency-domain augmentations, masked image modeling, image restoration and super-resolution, adversarial training, diffusion-based noise suppression, vision-language pre-training, learned model ensembling, and hierarchical feature enhancement. Extensive experimental analyses along with insightful observations are drawn to better understand the rationale behind each design. We hope this challenge could lay a solid foundation for future research on robust and reliable depth estimation and beyond. The datasets, competition toolkit, workshop recordings, and source code from the winning teams are publicly available on the challenge website.Abstract

SynFacePAD 2023: Competition on Face Presentation Attack Detection Based on Privacy-aware Synthetic Training Data

Meiling Fang, Marco Huber, Julian Fierrez, Raghavendra Ramachandra, Naser Damer, Alhasan Alkhaddour, Maksim Kasantcev, Vasiliy Pryadchenko, Ziyuan Yang, Huijie Huangfu, Yingyu Chen, Yi Zhang, Yuchen Pan, Junjun Jiang, Xianming Liu, Xianyun Sun, Caiyong Wang, Xingyu Liu, Zhaohua Chang, Guangzhe Zhao, Juan Tapia, Lazaro Gonzalez-Soler, Carlos Aravena, Daniel Schulz

arXiv:2311.05336v1 »Full PDF »

Accepted at IJCB2 023

This paper presents a summary of the Competition on Face Presentation Attack Detection Based on Privacy-aware Synthetic Training Data (SynFacePAD 2023) held at the 2023 International Joint Conference on Biometrics (IJCB 2023). The competition attracted a total of 8 participating teams with valid submissions from academia and industry. The competition aimed to motivate and attract solutions that target detecting face presentation attacks while considering synthetic-based training data motivated by privacy, legal and ethical concerns associated with personal data. To achieve that, the training data used by the participants was limited to synthetic data provided by the organizers. The submitted solutions presented innovations and novel approaches that led to outperforming the considered baseline in the investigated benchmarks.Abstract

Guided Depth Map Super-resolution: A Survey

Zhiwei Zhong, Xianming Liu, Junjun Jiang, Debin Zhao, Xiangyang Ji

arXiv:2302.09598v2 »Full PDF »

Accepted by ACM Computing Surveys

Guided depth map super-resolution (GDSR), which aims to reconstruct a high-resolution (HR) depth map from a low-resolution (LR) observation with the help of a paired HR color image, is a longstanding and fundamental problem, it has attracted considerable attention from computer vision and image processing communities. A myriad of novel and effective approaches have been proposed recently, especially with powerful deep learning techniques. This survey is an effort to present a comprehensive survey of recent progress in GDSR. We start by summarizing the problem of GDSR and explaining why it is challenging. Next, we introduce some commonly used datasets and image quality assessment methods. In addition, we roughly classify existing GDSR methods into three categories, i.e., filtering-based methods, prior-based methods, and learning-based methods. In each category, we introduce the general description of the published algorithms and design principles, summarize the representative methods, and discuss their highlights and limitations. Moreover, the depth related applications are introduced. Furthermore, we conduct experiments to evaluate the performance of some representative methods based on unified experimental configurations, so as to offer a systematic and fair performance evaluation to readers. Finally, we conclude this survey with possible directions and open problems for further research. All the related materials can be found at \url{https://github.com/zhwzhong/Guided-Depth-Map-Super-resolution-A-Survey}.Abstract

A Survey on Large Language Models for Code Generation

Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim, Sunghun Kim

arXiv:2406.00515v2 »Full PDF »
Large Language Models (LLMs) have garnered remarkable advancements across diverse code-related tasks, known as Code LLMs, particularly in code generation that generates source code with LLM from natural language descriptions. This burgeoning field has captured significant interest from both academic researchers and industry professionals due to its practical significance in software development, e.g., GitHub Copilot. Despite the active exploration of LLMs for a variety of code tasks, either from the perspective of natural language processing (NLP) or software engineering (SE) or both, there is a noticeable absence of a comprehensive and up-to-date literature review dedicated to LLM for code generation. In this survey, we aim to bridge this gap by providing a systematic literature review that serves as a valuable reference for researchers investigating the cutting-edge progress in LLMs for code generation. We introduce a taxonomy to categorize and discuss the recent developments in LLMs for code generation, covering aspects such as data curation, latest advances, performance evaluation, ethical implications, environmental impact, and real-world applications. In addition, we present a historical overview of the evolution of LLMs for code generation and offer an empirical comparison using the HumanEval, MBPP, and BigCodeBench benchmarks across various levels of difficulty and types of programming tasks to highlight the progressive enhancements in LLM capabilities for code generation. We identify critical challenges and promising opportunities regarding the gap between academia and practical development. Furthermore, we have established a dedicated resource GitHub page (https://github.com/juyongjiang/CodeLLMSurvey) to continuously document and disseminate the most recent advances in the field.Abstract

Fairness Risks for Group-conditionally Missing Demographics

Kaiqi Jiang, Wenzhe Fan, Mao Li, Xinhua Zhang

arXiv:2402.13393v2 »Full PDF »
Fairness-aware classification models have gained increasing attention in recent years as concerns grow on discrimination against some demographic groups. Most existing models require full knowledge of the sensitive features, which can be impractical due to privacy, legal issues, and an individual's fear of discrimination. The key challenge we will address is the group dependency of the unavailability, e.g., people of some age range may be more reluctant to reveal their age. Our solution augments general fairness risks with probabilistic imputations of the sensitive features, while jointly learning the group-conditionally missing probabilities in a variational auto-encoder. Our model is demonstrated effective on both image and tabular datasets, achieving an improved balance between accuracy and fairness.Abstract

Narrative Feature or Structured Feature? A Study of Large Language Models to Identify Cancer Patients at Risk of Heart Failure

Ziyi Chen, Mengyuan Zhang, Mustafa Mohammed Ahmed, Yi Guo, Thomas J. George, Jiang Bian, Yonghui Wu

arXiv:2403.11425v3 »Full PDF »

10 pages, 4 figures, 5 tables

Cancer treatments are known to introduce cardiotoxicity, negatively impacting outcomes and survivorship. Identifying cancer patients at risk of heart failure (HF) is critical to improving cancer treatment outcomes and safety. This study examined machine learning (ML) models to identify cancer patients at risk of HF using electronic health records (EHRs), including traditional ML, Time-Aware long short-term memory (T-LSTM), and large language models (LLMs) using novel narrative features derived from the structured medical codes. We identified a cancer cohort of 12,806 patients from the University of Florida Health, diagnosed with lung, breast, and colorectal cancers, among which 1,602 individuals developed HF after cancer. The LLM, GatorTron-3.9B, achieved the best F1 scores, outperforming the traditional support vector machines by 39%, the T-LSTM deep learning model by 7%, and a widely used transformer model, BERT, by 5.6%. The analysis shows that the proposed narrative features remarkably increased feature density and improved performance.Abstract

FEED: Fairness-Enhanced Meta-Learning for Domain Generalization

Kai Jiang, Chen Zhao, Haoliang Wang, Feng Chen

arXiv:2411.01316v1 »Full PDF »

IEEE International Conference on Big Data 2024

Generalizing to out-of-distribution data while being aware of model fairness is a significant and challenging problem in meta-learning. The goal of this problem is to find a set of fairness-aware invariant parameters of classifier that is trained using data drawn from a family of related training domains with distribution shift on non-sensitive features as well as different levels of dependence between model predictions and sensitive features so that the classifier can achieve good generalization performance on unknown but distinct test domains. To tackle this challenge, existing state-of-the-art methods either address the domain generalization problem but completely ignore learning with fairness or solely specify shifted domains with various fairness levels. This paper introduces an approach to fairness-aware meta-learning that significantly enhances domain generalization capabilities. Our framework, Fairness-Enhanced Meta-Learning for Domain Generalization (FEED), disentangles latent data representations into content, style, and sensitive vectors. This disentanglement facilitates the robust generalization of machine learning models across diverse domains while adhering to fairness constraints. Unlike traditional methods that focus primarily on domain invariance or sensitivity to shifts, our model integrates a fairness-aware invariance criterion directly into the meta-learning process. This integration ensures that the learned parameters uphold fairness consistently, even when domain characteristics vary widely. We validate our approach through extensive experiments across multiple benchmarks, demonstrating not only superior performance in maintaining high accuracy and fairness but also significant improvements over existing state-of-the-art methods in domain generalization tasks.Abstract

Protecting Privacy in Multimodal Large Language Models with MLLMU-Bench

Zheyuan Liu, Guangyao Dou, Mengzhao Jia, Zhaoxuan Tan, Qingkai Zeng, Yongle Yuan, Meng Jiang

arXiv:2410.22108v1 »Full PDF »

30 pages

Generative models such as Large Language Models (LLM) and Multimodal Large Language models (MLLMs) trained on massive web corpora can memorize and disclose individuals' confidential and private data, raising legal and ethical concerns. While many previous works have addressed this issue in LLM via machine unlearning, it remains largely unexplored for MLLMs. To tackle this challenge, we introduce Multimodal Large Language Model Unlearning Benchmark (MLLMU-Bench), a novel benchmark aimed at advancing the understanding of multimodal machine unlearning. MLLMU-Bench consists of 500 fictitious profiles and 153 profiles for public celebrities, each profile feature over 14 customized question-answer pairs, evaluated from both multimodal (image+text) and unimodal (text) perspectives. The benchmark is divided into four sets to assess unlearning algorithms in terms of efficacy, generalizability, and model utility. Finally, we provide baseline results using existing generative model unlearning algorithms. Surprisingly, our experiments show that unimodal unlearning algorithms excel in generation and cloze tasks, while multimodal unlearning approaches perform better in classification tasks with multimodal inputs.Abstract

GLBench: A Comprehensive Benchmark for Graph with Large Language Models

Yuhan Li, Peisong Wang, Xiao Zhu, Aochuan Chen, Haiyun Jiang, Deng Cai, Victor Wai Kin Chan, Jia Li

arXiv:2407.07457v4 »Full PDF »
The emergence of large language models (LLMs) has revolutionized the way we interact with graphs, leading to a new paradigm called GraphLLM. Despite the rapid development of GraphLLM methods in recent years, the progress and understanding of this field remain unclear due to the lack of a benchmark with consistent experimental protocols. To bridge this gap, we introduce GLBench, the first comprehensive benchmark for evaluating GraphLLM methods in both supervised and zero-shot scenarios. GLBench provides a fair and thorough evaluation of different categories of GraphLLM methods, along with traditional baselines such as graph neural networks. Through extensive experiments on a collection of real-world datasets with consistent data processing and splitting strategies, we have uncovered several key findings. Firstly, GraphLLM methods outperform traditional baselines in supervised settings, with LLM-as-enhancers showing the most robust performance. However, using LLMs as predictors is less effective and often leads to uncontrollable output issues. We also notice that no clear scaling laws exist for current GraphLLM methods. In addition, both structures and semantics are crucial for effective zero-shot transfer, and our proposed simple baseline can even outperform several models tailored for zero-shot scenarios. The data and code of the benchmark can be found at https://github.com/NineAbyss/GLBench.Abstract

IDEATOR: Jailbreaking VLMs Using VLMs

Ruofan Wang, Bo Wang, Xingjun Ma, Yu-Gang Jiang

arXiv:2411.00827v1 »Full PDF »
As large Vision-Language Models (VLMs) continue to gain prominence, ensuring their safety deployment in real-world applications has become a critical concern. Recently, significant research efforts have focused on evaluating the robustness of VLMs against jailbreak attacks. Due to challenges in obtaining multi-modal data, current studies often assess VLM robustness by generating adversarial or query-relevant images based on harmful text datasets. However, the jailbreak images generated this way exhibit certain limitations. Adversarial images require white-box access to the target VLM and are relatively easy to defend against, while query-relevant images must be linked to the target harmful content, limiting their diversity and effectiveness. In this paper, we propose a novel jailbreak method named IDEATOR, which autonomously generates malicious image-text pairs for black-box jailbreak attacks. IDEATOR is a VLM-based approach inspired by our conjecture that a VLM itself might be a powerful red team model for generating jailbreak prompts. Specifically, IDEATOR employs a VLM to generate jailbreak texts while leveraging a state-of-the-art diffusion model to create corresponding jailbreak images. Extensive experiments demonstrate the high effectiveness and transferability of IDEATOR. It successfully jailbreaks MiniGPT-4 with a 94% success rate and transfers seamlessly to LLaVA and InstructBLIP, achieving high success rates of 82% and 88%, respectively. IDEATOR uncovers previously unrecognized vulnerabilities in VLMs, calling for advanced safety mechanisms.Abstract