fairXiv Pronounced fair • kive

16737 latest Fairness/Ethics + ML/AI papers

Generalized Out-of-Distribution Detection and Beyond in Vision Language Model Era: A Survey

Atsuyuki Miyai, Jingkang Yang, Jingyang Zhang, Yifei Ming, Yueqian Lin, Qing Yu, Go Irie, Shafiq Joty, Yixuan Li, Hai Li, Ziwei Liu, Toshihiko Yamasaki, Kiyoharu Aizawa

arXiv:2407.21794v1 »Full PDF »

survey paper. We welcome questions, issues, and paper requests via https://github.com/AtsuMiyai/Aw...

Detecting out-of-distribution (OOD) samples is crucial for ensuring the safety of machine learning systems and has shaped the field of OOD detection. Meanwhile, several other problems are closely related to OOD detection, including anomaly detection (AD), novelty detection (ND), open set recognition (OSR), and outlier detection (OD). To unify these problems, a generalized OOD detection framework was proposed, taxonomically categorizing these five problems. However, Vision Language Models (VLMs) such as CLIP have significantly changed the paradigm and blurred the boundaries between these fields, again confusing researchers. In this survey, we first present a generalized OOD detection v2, encapsulating the evolution of AD, ND, OSR, OOD detection, and OD in the VLM era. Our framework reveals that, with some field inactivity and integration, the demanding challenges have become OOD detection and AD. In addition, we also highlight the significant shift in the definition, problem settings, and benchmarks; we thus feature a comprehensive review of the methodology for OOD detection, including the discussion over other related tasks to clarify their relationship to OOD detection. Finally, we explore the advancements in the emerging Large Vision Language Model (LVLM) era, such as GPT-4V. We conclude this survey with open challenges and future directions.Abstract

Class-Incremental Learning: A Survey

Da-Wei Zhou, Qi-Wei Wang, Zhi-Hong Qi, Han-Jia Ye, De-Chuan Zhan, Ziwei Liu

arXiv:2302.03648v2 »Full PDF »

Accepted to TPAMI. Code is available at https://github.com/zhoudw-zdw/CIL_Survey/

Deep models, e.g., CNNs and Vision Transformers, have achieved impressive achievements in many vision tasks in the closed world. However, novel classes emerge from time to time in our ever-changing world, requiring a learning system to acquire new knowledge continually. Class-Incremental Learning (CIL) enables the learner to incorporate the knowledge of new classes incrementally and build a universal classifier among all seen classes. Correspondingly, when directly training the model with new class instances, a fatal problem occurs -- the model tends to catastrophically forget the characteristics of former ones, and its performance drastically degrades. There have been numerous efforts to tackle catastrophic forgetting in the machine learning community. In this paper, we survey comprehensively recent advances in class-incremental learning and summarize these methods from several aspects. We also provide a rigorous and unified evaluation of 17 methods in benchmark image classification tasks to find out the characteristics of different algorithms empirically. Furthermore, we notice that the current comparison protocol ignores the influence of memory budget in model storage, which may result in unfair comparison and biased results. Hence, we advocate fair comparison by aligning the memory budget in evaluation, as well as several memory-agnostic performance measures. The source code is available at https://github.com/zhoudw-zdw/CIL_Survey/Abstract

Calib3D: Calibrating Model Preferences for Reliable 3D Scene Understanding

Lingdong Kong, Xiang Xu, Jun Cen, Wenwei Zhang, Liang Pan, Kai Chen, Ziwei Liu

arXiv:2403.17010v1 »Full PDF »

Preprint; 37 pages, 8 figures, 11 tables; Code at https://github.com/ldkong1205/Calib3D

Safety-critical 3D scene understanding tasks necessitate not only accurate but also confident predictions from 3D perception models. This study introduces Calib3D, a pioneering effort to benchmark and scrutinize the reliability of 3D scene understanding models from an uncertainty estimation viewpoint. We comprehensively evaluate 28 state-of-the-art models across 10 diverse 3D datasets, uncovering insightful phenomena that cope with both the aleatoric and epistemic uncertainties in 3D scene understanding. We discover that despite achieving impressive levels of accuracy, existing models frequently fail to provide reliable uncertainty estimates -- a pitfall that critically undermines their applicability in safety-sensitive contexts. Through extensive analysis of key factors such as network capacity, LiDAR representations, rasterization resolutions, and 3D data augmentation techniques, we correlate these aspects directly with the model calibration efficacy. Furthermore, we introduce DeptS, a novel depth-aware scaling approach aimed at enhancing 3D model calibration. Extensive experiments across a wide range of configurations validate the superiority of our method. We hope this work could serve as a cornerstone for fostering reliable 3D scene understanding. Code and benchmark toolkits are publicly available.Abstract

Generalized Out-of-Distribution Detection: A Survey

Jingkang Yang, Kaiyang Zhou, Yixuan Li, Ziwei Liu

arXiv:2110.11334v3 »Full PDF »

Feel free to comment on our Overleaf manuscript: https://www.overleaf.com/9899719915wmccvdtwpkct#c...

Out-of-distribution (OOD) detection is critical to ensuring the reliability and safety of machine learning systems. For instance, in autonomous driving, we would like the driving system to issue an alert and hand over the control to humans when it detects unusual scenes or objects that it has never seen during training time and cannot make a safe decision. The term, OOD detection, first emerged in 2017 and since then has received increasing attention from the research community, leading to a plethora of methods developed, ranging from classification-based to density-based to distance-based ones. Meanwhile, several other problems, including anomaly detection (AD), novelty detection (ND), open set recognition (OSR), and outlier detection (OD), are closely related to OOD detection in terms of motivation and methodology. Despite common goals, these topics develop in isolation, and their subtle differences in definition and problem setting often confuse readers and practitioners. In this survey, we first present a unified framework called generalized OOD detection, which encompasses the five aforementioned problems, i.e., AD, ND, OSR, OOD detection, and OD. Under our framework, these five problems can be seen as special cases or sub-tasks, and are easier to distinguish. We then review each of these five areas by summarizing their recent technical developments, with a special focus on OOD detection methodologies. We conclude this survey with open challenges and potential research directions.Abstract

Gemini vs GPT-4V: A Preliminary Comparison and Combination of Vision-Language Models Through Qualitative Cases

Zhangyang Qi, Ye Fang, Mengchen Zhang, Zeyi Sun, Tong Wu, Ziwei Liu, Dahua Lin, Jiaqi Wang, Hengshuang Zhao

arXiv:2312.15011v1 »Full PDF »

Project Page: https://github.com/Qi-Zhangyang/Gemini-vs-GPT4V. arXiv admin note: substantial text ...

The rapidly evolving sector of Multi-modal Large Language Models (MLLMs) is at the forefront of integrating linguistic and visual processing in artificial intelligence. This paper presents an in-depth comparative study of two pioneering models: Google's Gemini and OpenAI's GPT-4V(ision). Our study involves a multi-faceted evaluation of both models across key dimensions such as Vision-Language Capability, Interaction with Humans, Temporal Understanding, and assessments in both Intelligence and Emotional Quotients. The core of our analysis delves into the distinct visual comprehension abilities of each model. We conducted a series of structured experiments to evaluate their performance in various industrial application scenarios, offering a comprehensive perspective on their practical utility. We not only involve direct performance comparisons but also include adjustments in prompts and scenarios to ensure a balanced and fair analysis. Our findings illuminate the unique strengths and niches of both models. GPT-4V distinguishes itself with its precision and succinctness in responses, while Gemini excels in providing detailed, expansive answers accompanied by relevant imagery and links. These understandings not only shed light on the comparative merits of Gemini and GPT-4V but also underscore the evolving landscape of multimodal foundation models, paving the way for future advancements in this area. After the comparison, we attempted to achieve better results by combining the two models. Finally, We would like to express our profound gratitude to the teams behind GPT-4V and Gemini for their pioneering contributions to the field. Our acknowledgments are also extended to the comprehensive qualitative analysis presented in 'Dawn' by Yang et al. This work, with its extensive collection of image samples, prompts, and GPT-4V-related results, provided a foundational basis for our analysis.Abstract

Robo3D: Towards Robust and Reliable 3D Perception against Corruptions

Lingdong Kong, Youquan Liu, Xin Li, Runnan Chen, Wenwei Zhang, Jiawei Ren, Liang Pan, Kai Chen, Ziwei Liu

arXiv:2303.17597v4 »Full PDF »

ICCV 2023; 34 pages, 26 figures, 26 tables; Code at https://github.com/ldkong1205/Robo3D

The robustness of 3D perception systems under natural corruptions from environments and sensors is pivotal for safety-critical applications. Existing large-scale 3D perception datasets often contain data that are meticulously cleaned. Such configurations, however, cannot reflect the reliability of perception models during the deployment stage. In this work, we present Robo3D, the first comprehensive benchmark heading toward probing the robustness of 3D detectors and segmentors under out-of-distribution scenarios against natural corruptions that occur in real-world environments. Specifically, we consider eight corruption types stemming from severe weather conditions, external disturbances, and internal sensor failure. We uncover that, although promising results have been progressively achieved on standard benchmarks, state-of-the-art 3D perception models are at risk of being vulnerable to corruptions. We draw key observations on the use of data representations, augmentation schemes, and training strategies, that could severely affect the model's performance. To pursue better robustness, we propose a density-insensitive training framework along with a simple flexible voxelization strategy to enhance the model resiliency. We hope our benchmark and approach could inspire future research in designing more robust and reliable 3D perception models. Our robustness benchmark suite is publicly available.Abstract

BiBench: Benchmarking and Analyzing Network Binarization

Haotong Qin, Mingyuan Zhang, Yifu Ding, Aoyu Li, Zhongang Cai, Ziwei Liu, Fisher Yu, Xianglong Liu

arXiv:2301.11233v2 »Full PDF »
Network binarization emerges as one of the most promising compression approaches offering extraordinary computation and memory savings by minimizing the bit-width. However, recent research has shown that applying existing binarization algorithms to diverse tasks, architectures, and hardware in realistic scenarios is still not straightforward. Common challenges of binarization, such as accuracy degradation and efficiency limitation, suggest that its attributes are not fully understood. To close this gap, we present BiBench, a rigorously designed benchmark with in-depth analysis for network binarization. We first carefully scrutinize the requirements of binarization in the actual production and define evaluation tracks and metrics for a comprehensive and fair investigation. Then, we evaluate and analyze a series of milestone binarization algorithms that function at the operator level and with extensive influence. Our benchmark reveals that 1) the binarized operator has a crucial impact on the performance and deployability of binarized networks; 2) the accuracy of binarization varies significantly across different learning tasks and neural architectures; 3) binarization has demonstrated promising efficiency potential on edge devices despite the limited hardware support. The results and analysis also lead to a promising paradigm for accurate and efficient binarization. We believe that BiBench will contribute to the broader adoption of binarization and serve as a foundation for future research. The code for our BiBench is released https://github.com/htqin/BiBench .Abstract

OpenOOD: Benchmarking Generalized Out-of-Distribution Detection

Jingkang Yang, Pengyun Wang, Dejian Zou, Zitang Zhou, Kunyuan Ding, Wenxuan Peng, Haoqi Wang, Guangyao Chen, Bo Li, Yiyou Sun, Xuefeng Du, Kaiyang Zhou, Wayne Zhang, Dan Hendrycks, Yixuan Li, Ziwei Liu

arXiv:2210.07242v1 »Full PDF »

Accepted by NeurIPS 2022 Datasets and Benchmarks Track. Codebase: https://github.com/Jingkang50/Op...

Out-of-distribution (OOD) detection is vital to safety-critical machine learning applications and has thus been extensively studied, with a plethora of methods developed in the literature. However, the field currently lacks a unified, strictly formulated, and comprehensive benchmark, which often results in unfair comparisons and inconclusive results. From the problem setting perspective, OOD detection is closely related to neighboring fields including anomaly detection (AD), open set recognition (OSR), and model uncertainty, since methods developed for one domain are often applicable to each other. To help the community to improve the evaluation and advance, we build a unified, well-structured codebase called OpenOOD, which implements over 30 methods developed in relevant fields and provides a comprehensive benchmark under the recently proposed generalized OOD detection framework. With a comprehensive comparison of these methods, we are gratified that the field has progressed significantly over the past few years, where both preprocessing methods and the orthogonal post-hoc methods show strong potential.Abstract

Benchmarking and Analyzing 3D Human Pose and Shape Estimation Beyond Algorithms

Hui En Pang, Zhongang Cai, Lei Yang, Tianwei Zhang, Ziwei Liu

arXiv:2209.10529v1 »Full PDF »

Submission to 36th Conference on Neural Information Processing Systems (NeurIPS 2022) Track on Dat...

3D human pose and shape estimation (a.k.a. "human mesh recovery") has achieved substantial progress. Researchers mainly focus on the development of novel algorithms, while less attention has been paid to other critical factors involved. This could lead to less optimal baselines, hindering the fair and faithful evaluations of newly designed methodologies. To address this problem, this work presents the first comprehensive benchmarking study from three under-explored perspectives beyond algorithms. 1) Datasets. An analysis on 31 datasets reveals the distinct impacts of data samples: datasets featuring critical attributes (i.e. diverse poses, shapes, camera characteristics, backbone features) are more effective. Strategical selection and combination of high-quality datasets can yield a significant boost to the model performance. 2) Backbones. Experiments with 10 backbones, ranging from CNNs to transformers, show the knowledge learnt from a proximity task is readily transferable to human mesh recovery. 3) Training strategies. Proper augmentation techniques and loss designs are crucial. With the above findings, we achieve a PA-MPJPE of 47.3 mm on the 3DPW test set with a relatively simple model. More importantly, we provide strong baselines for fair comparisons of algorithms, and recommendations for building effective training configurations in the future. Codebase is available at http://github.com/smplbody/hmr-benchmarksAbstract

Open Long-Tailed Recognition in a Dynamic World

Ziwei Liu, Zhongqi Miao, Xiaohang Zhan, Jiayun Wang, Boqing Gong, Stella X. Yu

arXiv:2208.08349v1 »Full PDF »

To appear in IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2022. Extende...

Real world data often exhibits a long-tailed and open-ended (with unseen classes) distribution. A practical recognition system must balance between majority (head) and minority (tail) classes, generalize across the distribution, and acknowledge novelty upon the instances of unseen classes (open classes). We define Open Long-Tailed Recognition++ (OLTR++) as learning from such naturally distributed data and optimizing for the classification accuracy over a balanced test set which includes both known and open classes. OLTR++ handles imbalanced classification, few-shot learning, open-set recognition, and active learning in one integrated algorithm, whereas existing classification approaches often focus only on one or two aspects and deliver poorly over the entire spectrum. The key challenges are: 1) how to share visual knowledge between head and tail classes, 2) how to reduce confusion between tail and open classes, and 3) how to actively explore open classes with learned knowledge. Our algorithm, OLTR++, maps images to a feature space such that visual concepts can relate to each other through a memory association mechanism and a learned metric (dynamic meta-embedding) that both respects the closed world classification of seen classes and acknowledges the novelty of open classes. Additionally, we propose an active learning scheme based on visual memory, which learns to recognize open classes in a data-efficient manner for future expansions. On three large-scale open long-tailed datasets we curated from ImageNet (object-centric), Places (scene-centric), and MS1M (face-centric) data, as well as three standard benchmarks (CIFAR-10-LT, CIFAR-100-LT, and iNaturalist-18), our approach, as a unified framework, consistently demonstrates competitive performance. Notably, our approach also shows strong potential for the active exploration of open classes and the fairness analysis of minority groups.Abstract