fairXiv Pronounced fair • kive

16737 latest Fairness/Ethics + ML/AI papers

GPT-4o System Card

OpenAI, :, Aaron Hurst, Adam Lerer, Adam P. Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, Aleksander Mądry, Alex Baker-Whitcomb, Alex Beutel, Alex Borzunov, Alex Carney, Alex Chow, Alex Kirillov, Alex Nichol, Alex Paino, Alex Renzin, Alex Tachard Passos, Alexander Kirillov, Alexi Christakis, Alexis Conneau, Ali Kamali, Allan Jabri, Allison Moyer, Allison Tam, Amadou Crookes, Amin Tootoochian, Amin Tootoonchian, Ananya Kumar, Andrea Vallone, Andrej Karpathy, Andrew Braunstein, Andrew Cann, Andrew Codispoti, Andrew Galu, Andrew Kondrich, Andrew Tulloch, Andrey Mishchenko, Angela Baek, Angela Jiang, Antoine Pelisse, Antonia Woodford, Anuj Gosalia, Arka Dhar, Ashley Pantuliano, Avi Nayak, Avital Oliver, Barret Zoph, Behrooz Ghorbani, Ben Leimberger, Ben Rossen, Ben Sokolowsky, Ben Wang, Benjamin Zweig, Beth Hoover, Blake Samic, Bob McGrew, Bobby Spero, Bogo Giertler, Bowen Cheng, Brad Lightcap, Brandon Walkin, Brendan Quinn, Brian Guarraci, Brian Hsu, Bright Kellogg, Brydon Eastman, Camillo Lugaresi, Carroll Wainwright, Cary Bassin, Cary Hudson, Casey Chu, Chad Nelson, Chak Li, Chan Jun Shern, Channing Conger, Charlotte Barette, Chelsea Voss, Chen Ding, Cheng Lu, Chong Zhang, Chris Beaumont, Chris Hallacy, Chris Koch, Christian Gibson, Christina Kim, Christine Choi, Christine McLeavey, Christopher Hesse, Claudia Fischer, Clemens Winter, Coley Czarnecki, Colin Jarvis, Colin Wei, Constantin Koumouzelis, Dane Sherburn, Daniel Kappler, Daniel Levin, Daniel Levy, David Carr, David Farhi, David Mely, David Robinson, David Sasaki, Denny Jin, Dev Valladares, Dimitris Tsipras, Doug Li, Duc Phong Nguyen, Duncan Findlay, Edede Oiwoh, Edmund Wong, Ehsan Asdar, Elizabeth Proehl, Elizabeth Yang, Eric Antonow, Eric Kramer, Eric Peterson, Eric Sigler, Eric Wallace, Eugene Brevdo, Evan Mays, Farzad Khorasani, Felipe Petroski Such, Filippo Raso, Francis Zhang, Fred von Lohmann, Freddie Sulit, Gabriel Goh, Gene Oden, Geoff Salmon, Giulio Starace, Greg Brockman, Hadi Salman, Haiming Bao, Haitang Hu, Hannah Wong, Haoyu Wang, Heather Schmidt, Heather Whitney, Heewoo Jun, Hendrik Kirchner, Henrique Ponde de Oliveira Pinto, Hongyu Ren, Huiwen Chang, Hyung Won Chung, Ian Kivlichan, Ian O'Connell, Ian O'Connell, Ian Osband, Ian Silber, Ian Sohl, Ibrahim Okuyucu, Ikai Lan, Ilya Kostrikov, Ilya Sutskever, Ingmar Kanitscheider, Ishaan Gulrajani, Jacob Coxon, Jacob Menick, Jakub Pachocki, James Aung, James Betker, James Crooks, James Lennon, Jamie Kiros, Jan Leike, Jane Park, Jason Kwon, Jason Phang, Jason Teplitz, Jason Wei, Jason Wolfe, Jay Chen, Jeff Harris, Jenia Varavva, Jessica Gan Lee, Jessica Shieh, Ji Lin, Jiahui Yu, Jiayi Weng, Jie Tang, Jieqi Yu, Joanne Jang, Joaquin Quinonero Candela, Joe Beutler, Joe Landers, Joel Parish, Johannes Heidecke, John Schulman, Jonathan Lachman, Jonathan McKay, Jonathan Uesato, Jonathan Ward, Jong Wook Kim, Joost Huizinga, Jordan Sitkin, Jos Kraaijeveld, Josh Gross, Josh Kaplan, Josh Snyder, Joshua Achiam, Joy Jiao, Joyce Lee, Juntang Zhuang, Justyn Harriman, Kai Fricke, Kai Hayashi, Karan Singhal, Katy Shi, Kavin Karthik, Kayla Wood, Kendra Rimbach, Kenny Hsu, Kenny Nguyen, Keren Gu-Lemberg, Kevin Button, Kevin Liu, Kiel Howe, Krithika Muthukumar, Kyle Luther, Lama Ahmad, Larry Kai, Lauren Itow, Lauren Workman, Leher Pathak, Leo Chen, Li Jing, Lia Guy, Liam Fedus, Liang Zhou, Lien Mamitsuka, Lilian Weng, Lindsay McCallum, Lindsey Held, Long Ouyang, Louis Feuvrier, Lu Zhang, Lukas Kondraciuk, Lukasz Kaiser, Luke Hewitt, Luke Metz, Lyric Doshi, Mada Aflak, Maddie Simens, Madelaine Boyd, Madeleine Thompson, Marat Dukhan, Mark Chen, Mark Gray, Mark Hudnall, Marvin Zhang, Marwan Aljubeh, Mateusz Litwin, Matthew Zeng, Max Johnson, Maya Shetty, Mayank Gupta, Meghan Shah, Mehmet Yatbaz, Meng Jia Yang, Mengchao Zhong, Mia Glaese, Mianna Chen, Michael Janner, Michael Lampe, Michael Petrov, Michael Wu, Michele Wang, Michelle Fradin, Michelle Pokrass, Miguel Castro, Miguel Oom Temudo de Castro, Mikhail Pavlov, Miles Brundage, Miles Wang, Minal Khan, Mira Murati, Mo Bavarian, Molly Lin, Murat Yesildal, Nacho Soto, Natalia Gimelshein, Natalie Cone, Natalie Staudacher, Natalie Summers, Natan LaFontaine, Neil Chowdhury, Nick Ryder, Nick Stathas, Nick Turley, Nik Tezak, Niko Felix, Nithanth Kudige, Nitish Keskar, Noah Deutsch, Noel Bundick, Nora Puckett, Ofir Nachum, Ola Okelola, Oleg Boiko, Oleg Murk, Oliver Jaffe, Olivia Watkins, Olivier Godement, Owen Campbell-Moore, Patrick Chao, Paul McMillan, Pavel Belov, Peng Su, Peter Bak, Peter Bakkum, Peter Deng, Peter Dolan, Peter Hoeschele, Peter Welinder, Phil Tillet, Philip Pronin, Philippe Tillet, Prafulla Dhariwal, Qiming Yuan, Rachel Dias, Rachel Lim, Rahul Arora, Rajan Troll, Randall Lin, Rapha Gontijo Lopes, Raul Puri, Reah Miyara, Reimar Leike, Renaud Gaubert, Reza Zamani, Ricky Wang, Rob Donnelly, Rob Honsby, Rocky Smith, Rohan Sahai, Rohit Ramchandani, Romain Huet, Rory Carmichael, Rowan Zellers, Roy Chen, Ruby Chen, Ruslan Nigmatullin, Ryan Cheu, Saachi Jain, Sam Altman, Sam Schoenholz, Sam Toizer, Samuel Miserendino, Sandhini Agarwal, Sara Culver, Scott Ethersmith, Scott Gray, Sean Grove, Sean Metzger, Shamez Hermani, Shantanu Jain, Shengjia Zhao, Sherwin Wu, Shino Jomoto, Shirong Wu, Shuaiqi, Xia, Sonia Phene, Spencer Papay, Srinivas Narayanan, Steve Coffey, Steve Lee, Stewart Hall, Suchir Balaji, Tal Broda, Tal Stramer, Tao Xu, Tarun Gogineni, Taya Christianson, Ted Sanders, Tejal Patwardhan, Thomas Cunninghman, Thomas Degry, Thomas Dimson, Thomas Raoux, Thomas Shadwell, Tianhao Zheng, Todd Underwood, Todor Markov, Toki Sherbakov, Tom Rubin, Tom Stasi, Tomer Kaftan, Tristan Heywood, Troy Peterson, Tyce Walters, Tyna Eloundou, Valerie Qi, Veit Moeller, Vinnie Monaco, Vishal Kuo, Vlad Fomenko, Wayne Chang, Weiyi Zheng, Wenda Zhou, Wesam Manassra, Will Sheu, Wojciech Zaremba, Yash Patil, Yilei Qian, Yongjik Kim, Youlong Cheng, Yu Zhang, Yuchen He, Yuchen Zhang, Yujia Jin, Yunxing Dai, Yury Malkov

arXiv:2410.21276v1 »Full PDF »
GPT-4o is an autoregressive omni model that accepts as input any combination of text, audio, image, and video, and generates any combination of text, audio, and image outputs. It's trained end-to-end across text, vision, and audio, meaning all inputs and outputs are processed by the same neural network. GPT-4o can respond to audio inputs in as little as 232 milliseconds, with an average of 320 milliseconds, which is similar to human response time in conversation. It matches GPT-4 Turbo performance on text in English and code, with significant improvement on text in non-English languages, while also being much faster and 50\% cheaper in the API. GPT-4o is especially better at vision and audio understanding compared to existing models. In line with our commitment to building AI safely and consistent with our voluntary commitments to the White House, we are sharing the GPT-4o System Card, which includes our Preparedness Framework evaluations. In this System Card, we provide a detailed look at GPT-4o's capabilities, limitations, and safety evaluations across multiple categories, focusing on speech-to-speech while also evaluating text and image capabilities, and measures we've implemented to ensure the model is safe and aligned. We also include third-party assessments on dangerous capabilities, as well as discussion of potential societal impacts of GPT-4o's text and vision capabilities.Abstract

Hidden Persuaders: LLMs' Political Leaning and Their Influence on Voters

Yujin Potter, Shiyang Lai, Junsol Kim, James Evans, Dawn Song

arXiv:2410.24190v3 »Full PDF »

EMNLP 2024 Main

How could LLMs influence our democracy? We investigate LLMs' political leanings and the potential influence of LLMs on voters by conducting multiple experiments in a U.S. presidential election context. Through a voting simulation, we first demonstrate 18 open- and closed-weight LLMs' political preference for a Democratic nominee over a Republican nominee. We show how this leaning towards the Democratic nominee becomes more pronounced in instruction-tuned models compared to their base versions by analyzing their responses to candidate-policy related questions. We further explore the potential impact of LLMs on voter choice by conducting an experiment with 935 U.S. registered voters. During the experiments, participants interacted with LLMs (Claude-3, Llama-3, and GPT-4) over five exchanges. The experiment results show a shift in voter choices towards the Democratic nominee following LLM interaction, widening the voting margin from 0.7% to 4.6%, even though LLMs were not asked to persuade users to support the Democratic nominee during the discourse. This effect is larger than many previous studies on the persuasiveness of political campaigns, which have shown minimal effects in presidential elections. Many users also expressed a desire for further political interaction with LLMs. Which aspects of LLM interactions drove these shifts in voter choice requires further study. Lastly, we explore how a safety method can make LLMs more politically neutral, while raising the question of whether such neutrality is truly the path forward.Abstract

Evaluating the Economic Implications of Using Machine Learning in Clinical Psychiatry

Soaad Hossain, James Rasalingam, Arhum Waheed, Fatah Awil, Rachel Kandiah, Syed Ishtiaque Ahmed

arXiv:2411.05856v1 »Full PDF »

11 pages, submitted to Machine Learning for Health (ML4H) 2024

With the growing interest in using AI and machine learning (ML) in medicine, there is an increasing number of literature covering the application and ethics of using AI and ML in areas of medicine such as clinical psychiatry. The problem is that there is little literature covering the economic aspects associated with using ML in clinical psychiatry. This study addresses this gap by specifically studying the economic implications of using ML in clinical psychiatry. In this paper, we evaluate the economic implications of using ML in clinical psychiatry through using three problem-oriented case studies, literature on economics, socioeconomic and medical AI, and two types of health economic evaluations. In addition, we provide details on fairness, legal, ethics and other considerations for ML in clinical psychiatry.Abstract

CARES: A Comprehensive Benchmark of Trustworthiness in Medical Vision Language Models

Peng Xia, Ze Chen, Juanxi Tian, Yangrui Gong, Ruibo Hou, Yue Xu, Zhenbang Wu, Zhiyuan Fan, Yiyang Zhou, Kangyu Zhu, Wenhao Zheng, Zhaoyang Wang, Xiao Wang, Xuchao Zhang, Chetan Bansal, Marc Niethammer, Junzhou Huang, Hongtu Zhu, Yun Li, Jimeng Sun, Zongyuan Ge, Gang Li, James Zou, Huaxiu Yao

arXiv:2406.06007v3 »Full PDF »

NeurIPS 2024 Datasets and Benchmarks Track

Artificial intelligence has significantly impacted medical applications, particularly with the advent of Medical Large Vision Language Models (Med-LVLMs), sparking optimism for the future of automated and personalized healthcare. However, the trustworthiness of Med-LVLMs remains unverified, posing significant risks for future model deployment. In this paper, we introduce CARES and aim to comprehensively evaluate the Trustworthiness of Med-LVLMs across the medical domain. We assess the trustworthiness of Med-LVLMs across five dimensions, including trustfulness, fairness, safety, privacy, and robustness. CARES comprises about 41K question-answer pairs in both closed and open-ended formats, covering 16 medical image modalities and 27 anatomical regions. Our analysis reveals that the models consistently exhibit concerns regarding trustworthiness, often displaying factual inaccuracies and failing to maintain fairness across different demographic groups. Furthermore, they are vulnerable to attacks and demonstrate a lack of privacy awareness. We publicly release our benchmark and code in https://cares-ai.github.io/.Abstract

CurateGPT: A flexible language-model assisted biocuration tool

Harry Caufield, Carlo Kroll, Shawn T O'Neil, Justin T Reese, Marcin P Joachimiak, Harshad Hegde, Nomi L Harris, Madan Krishnamurthy, James A McLaughlin, Damian Smedley, Melissa A Haendel, Peter N Robinson, Christopher J Mungall

arXiv:2411.00046v1 »Full PDF »
Effective data-driven biomedical discovery requires data curation: a time-consuming process of finding, organizing, distilling, integrating, interpreting, annotating, and validating diverse information into a structured form suitable for databases and knowledge bases. Accurate and efficient curation of these digital assets is critical to ensuring that they are FAIR, trustworthy, and sustainable. Unfortunately, expert curators face significant time and resource constraints. The rapid pace of new information being published daily is exceeding their capacity for curation. Generative AI, exemplified by instruction-tuned large language models (LLMs), has opened up new possibilities for assisting human-driven curation. The design philosophy of agents combines the emerging abilities of generative AI with more precise methods. A curator's tasks can be aided by agents for performing reasoning, searching ontologies, and integrating knowledge across external sources, all efforts otherwise requiring extensive manual effort. Our LLM-driven annotation tool, CurateGPT, melds the power of generative AI together with trusted knowledge bases and literature sources. CurateGPT streamlines the curation process, enhancing collaboration and efficiency in common workflows. Compared to direct interaction with an LLM, CurateGPT's agents enable access to information beyond that in the LLM's training data and they provide direct links to the data supporting each claim. This helps curators, researchers, and engineers scale up curation efforts to keep pace with the ever-increasing volume of scientific data.Abstract

M-RewardBench: Evaluating Reward Models in Multilingual Settings

Srishti Gureja, Lester James V. Miranda, Shayekh Bin Islam, Rishabh Maheshwary, Drishti Sharma, Gusti Winata, Nathan Lambert, Sebastian Ruder, Sara Hooker, Marzieh Fadaee

arXiv:2410.15522v2 »Full PDF »

16 pages, 6 figures, 10 tables. Website: https://m-rewardbench.github.io/ , Updated results with l...

Reward models (RMs) have driven the state-of-the-art performance of LLMs today by enabling the integration of human feedback into the language modeling process. However, RMs are primarily trained and evaluated in English, and their capabilities in multilingual settings remain largely understudied. In this work, we conduct a systematic evaluation of several reward models in multilingual settings. We first construct the first-of-its-kind multilingual RM evaluation benchmark, M-RewardBench, consisting of 2.87k preference instances for 23 typologically diverse languages, that tests the chat, safety, reasoning, and translation capabilities of RMs. We then rigorously evaluate a wide range of reward models on M-RewardBench, offering fresh insights into their performance across diverse languages. We identify a significant gap in RMs' performances between English and non-English languages and show that RM preferences can change substantially from one language to another. We also present several findings on how different multilingual aspects impact RM performance. Specifically, we show that the performance of RMs is improved with improved translation quality. Similarly, we demonstrate that the models exhibit better performance for high-resource languages. We release M-RewardBench dataset and the codebase in this study to facilitate a better understanding of RM evaluation in multilingual settings.Abstract

Hybrid Preferences: Learning to Route Instances for Human vs. AI Feedback

Lester James V. Miranda, Yizhong Wang, Yanai Elazar, Sachin Kumar, Valentina Pyatkin, Faeze Brahman, Noah A. Smith, Hannaneh Hajishirzi, Pradeep Dasigi

arXiv:2410.19133v2 »Full PDF »

Code in https://github.com/allenai/hybrid-preferences, MultiPref dataset in https://huggingface.co...

Learning from human feedback has enabled the alignment of language models (LMs) with human preferences. However, directly collecting human preferences can be expensive, time-consuming, and can have high variance. An appealing alternative is to distill preferences from LMs as a source of synthetic annotations as they are more consistent, cheaper, and scale better than human annotation; however, they are also prone to biases and errors. In this work, we introduce a routing framework that combines inputs from humans and LMs to achieve better annotation quality, while reducing the total cost of human annotation. The crux of our approach is to identify preference instances that will benefit from human annotations. We formulate this as an optimization problem: given a preference dataset and an evaluation metric, we train a performance prediction model to predict a reward model's performance on an arbitrary combination of human and LM annotations and employ a routing strategy that selects a combination that maximizes predicted performance. We train the performance prediction model on MultiPref, a new preference dataset with 10K instances paired with human and LM labels. We show that the selected hybrid mixture of LM and direct human preferences using our routing framework achieves better reward model performance compared to using either one exclusively. We simulate selective human preference collection on three other datasets and show that our method generalizes well to all three. We analyze features from the routing model to identify characteristics of instances that can benefit from human feedback, e.g., prompts with a moderate safety concern or moderate intent complexity. We release the dataset, annotation platform, and source code used in this study to foster more efficient and accurate preference collection in the future.Abstract

Designing LLM-Agents with Personalities: A Psychometric Approach

Muhua Huang, Xijuan Zhang, Christopher Soto, James Evans

arXiv:2410.19238v1 »Full PDF »
This research introduces a novel methodology for assigning quantifiable, controllable and psychometrically validated personalities to Large Language Models-Based Agents (Agents) using the Big Five personality framework. It seeks to overcome the constraints of human subject studies, proposing Agents as an accessible tool for social science inquiry. Through a series of four studies, this research demonstrates the feasibility of assigning psychometrically valid personality traits to Agents, enabling them to replicate complex human-like behaviors. The first study establishes an understanding of personality constructs and personality tests within the semantic space of an LLM. Two subsequent studies -- using empirical and simulated data -- illustrate the process of creating Agents and validate the results by showing strong correspondence between human and Agent answers to personality tests. The final study further corroborates this correspondence by using Agents to replicate known human correlations between personality traits and decision-making behaviors in scenarios involving risk-taking and ethical dilemmas, thereby validating the effectiveness of the psychometric approach to design Agents and its applicability to social and behavioral research.Abstract

End-to-End Optimization and Learning of Fair Court Schedules

My H Dinh, James Kotary, Lauryn P. Gouldin, William Yeoh, Ferdinando Fioretto

arXiv:2410.17415v1 »Full PDF »
Criminal courts across the United States handle millions of cases every year, and the scheduling of those cases must accommodate a diverse set of constraints, including the preferences and availability of courts, prosecutors, and defense teams. When criminal court schedules are formed, defendants' scheduling preferences often take the least priority, although defendants may face significant consequences (including arrest or detention) for missed court dates. Additionally, studies indicate that defendants' nonappearances impose costs on the courts and other system stakeholders. To address these issues, courts and commentators have begun to recognize that pretrial outcomes for defendants and for the system would be improved with greater attention to court processes, including \emph{court scheduling practices}. There is thus a need for fair criminal court pretrial scheduling systems that account for defendants' preferences and availability, but the collection of such data poses logistical challenges. Furthermore, optimizing schedules fairly across various parties' preferences is a complex optimization problem, even when such data is available. In an effort to construct such a fair scheduling system under data uncertainty, this paper proposes a joint optimization and learning framework that combines machine learning models trained end-to-end with efficient matching algorithms. This framework aims to produce court scheduling schedules that optimize a principled measure of fairness, balancing the availability and preferences of all parties.Abstract

Ethics Whitepaper: Whitepaper on Ethical Research into Large Language Models

Eddie L. Ungless, Nikolas Vitsakis, Zeerak Talat, James Garforth, Björn Ross, Arno Onken, Atoosa Kasirzadeh, Alexandra Birch

arXiv:2410.19812v1 »Full PDF »

47 pages

This whitepaper offers an overview of the ethical considerations surrounding research into or with large language models (LLMs). As LLMs become more integrated into widely used applications, their societal impact increases, bringing important ethical questions to the forefront. With a growing body of work examining the ethical development, deployment, and use of LLMs, this whitepaper provides a comprehensive and practical guide to best practices, designed to help those in research and in industry to uphold the highest ethical standards in their work.Abstract