Processing math: 100%

fairXiv Pronounced fair • kive

16737 latest Fairness/Ethics + ML/AI papers

GPT-4o System Card

OpenAI, :, Aaron Hurst, Adam Lerer, Adam P. Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, Aleksander Mądry, Alex Baker-Whitcomb, Alex Beutel, Alex Borzunov, Alex Carney, Alex Chow, Alex Kirillov, Alex Nichol, Alex Paino, Alex Renzin, Alex Tachard Passos, Alexander Kirillov, Alexi Christakis, Alexis Conneau, Ali Kamali, Allan Jabri, Allison Moyer, Allison Tam, Amadou Crookes, Amin Tootoochian, Amin Tootoonchian, Ananya Kumar, Andrea Vallone, Andrej Karpathy, Andrew Braunstein, Andrew Cann, Andrew Codispoti, Andrew Galu, Andrew Kondrich, Andrew Tulloch, Andrey Mishchenko, Angela Baek, Angela Jiang, Antoine Pelisse, Antonia Woodford, Anuj Gosalia, Arka Dhar, Ashley Pantuliano, Avi Nayak, Avital Oliver, Barret Zoph, Behrooz Ghorbani, Ben Leimberger, Ben Rossen, Ben Sokolowsky, Ben Wang, Benjamin Zweig, Beth Hoover, Blake Samic, Bob McGrew, Bobby Spero, Bogo Giertler, Bowen Cheng, Brad Lightcap, Brandon Walkin, Brendan Quinn, Brian Guarraci, Brian Hsu, Bright Kellogg, Brydon Eastman, Camillo Lugaresi, Carroll Wainwright, Cary Bassin, Cary Hudson, Casey Chu, Chad Nelson, Chak Li, Chan Jun Shern, Channing Conger, Charlotte Barette, Chelsea Voss, Chen Ding, Cheng Lu, Chong Zhang, Chris Beaumont, Chris Hallacy, Chris Koch, Christian Gibson, Christina Kim, Christine Choi, Christine McLeavey, Christopher Hesse, Claudia Fischer, Clemens Winter, Coley Czarnecki, Colin Jarvis, Colin Wei, Constantin Koumouzelis, Dane Sherburn, Daniel Kappler, Daniel Levin, Daniel Levy, David Carr, David Farhi, David Mely, David Robinson, David Sasaki, Denny Jin, Dev Valladares, Dimitris Tsipras, Doug Li, Duc Phong Nguyen, Duncan Findlay, Edede Oiwoh, Edmund Wong, Ehsan Asdar, Elizabeth Proehl, Elizabeth Yang, Eric Antonow, Eric Kramer, Eric Peterson, Eric Sigler, Eric Wallace, Eugene Brevdo, Evan Mays, Farzad Khorasani, Felipe Petroski Such, Filippo Raso, Francis Zhang, Fred von Lohmann, Freddie Sulit, Gabriel Goh, Gene Oden, Geoff Salmon, Giulio Starace, Greg Brockman, Hadi Salman, Haiming Bao, Haitang Hu, Hannah Wong, Haoyu Wang, Heather Schmidt, Heather Whitney, Heewoo Jun, Hendrik Kirchner, Henrique Ponde de Oliveira Pinto, Hongyu Ren, Huiwen Chang, Hyung Won Chung, Ian Kivlichan, Ian O'Connell, Ian O'Connell, Ian Osband, Ian Silber, Ian Sohl, Ibrahim Okuyucu, Ikai Lan, Ilya Kostrikov, Ilya Sutskever, Ingmar Kanitscheider, Ishaan Gulrajani, Jacob Coxon, Jacob Menick, Jakub Pachocki, James Aung, James Betker, James Crooks, James Lennon, Jamie Kiros, Jan Leike, Jane Park, Jason Kwon, Jason Phang, Jason Teplitz, Jason Wei, Jason Wolfe, Jay Chen, Jeff Harris, Jenia Varavva, Jessica Gan Lee, Jessica Shieh, Ji Lin, Jiahui Yu, Jiayi Weng, Jie Tang, Jieqi Yu, Joanne Jang, Joaquin Quinonero Candela, Joe Beutler, Joe Landers, Joel Parish, Johannes Heidecke, John Schulman, Jonathan Lachman, Jonathan McKay, Jonathan Uesato, Jonathan Ward, Jong Wook Kim, Joost Huizinga, Jordan Sitkin, Jos Kraaijeveld, Josh Gross, Josh Kaplan, Josh Snyder, Joshua Achiam, Joy Jiao, Joyce Lee, Juntang Zhuang, Justyn Harriman, Kai Fricke, Kai Hayashi, Karan Singhal, Katy Shi, Kavin Karthik, Kayla Wood, Kendra Rimbach, Kenny Hsu, Kenny Nguyen, Keren Gu-Lemberg, Kevin Button, Kevin Liu, Kiel Howe, Krithika Muthukumar, Kyle Luther, Lama Ahmad, Larry Kai, Lauren Itow, Lauren Workman, Leher Pathak, Leo Chen, Li Jing, Lia Guy, Liam Fedus, Liang Zhou, Lien Mamitsuka, Lilian Weng, Lindsay McCallum, Lindsey Held, Long Ouyang, Louis Feuvrier, Lu Zhang, Lukas Kondraciuk, Lukasz Kaiser, Luke Hewitt, Luke Metz, Lyric Doshi, Mada Aflak, Maddie Simens, Madelaine Boyd, Madeleine Thompson, Marat Dukhan, Mark Chen, Mark Gray, Mark Hudnall, Marvin Zhang, Marwan Aljubeh, Mateusz Litwin, Matthew Zeng, Max Johnson, Maya Shetty, Mayank Gupta, Meghan Shah, Mehmet Yatbaz, Meng Jia Yang, Mengchao Zhong, Mia Glaese, Mianna Chen, Michael Janner, Michael Lampe, Michael Petrov, Michael Wu, Michele Wang, Michelle Fradin, Michelle Pokrass, Miguel Castro, Miguel Oom Temudo de Castro, Mikhail Pavlov, Miles Brundage, Miles Wang, Minal Khan, Mira Murati, Mo Bavarian, Molly Lin, Murat Yesildal, Nacho Soto, Natalia Gimelshein, Natalie Cone, Natalie Staudacher, Natalie Summers, Natan LaFontaine, Neil Chowdhury, Nick Ryder, Nick Stathas, Nick Turley, Nik Tezak, Niko Felix, Nithanth Kudige, Nitish Keskar, Noah Deutsch, Noel Bundick, Nora Puckett, Ofir Nachum, Ola Okelola, Oleg Boiko, Oleg Murk, Oliver Jaffe, Olivia Watkins, Olivier Godement, Owen Campbell-Moore, Patrick Chao, Paul McMillan, Pavel Belov, Peng Su, Peter Bak, Peter Bakkum, Peter Deng, Peter Dolan, Peter Hoeschele, Peter Welinder, Phil Tillet, Philip Pronin, Philippe Tillet, Prafulla Dhariwal, Qiming Yuan, Rachel Dias, Rachel Lim, Rahul Arora, Rajan Troll, Randall Lin, Rapha Gontijo Lopes, Raul Puri, Reah Miyara, Reimar Leike, Renaud Gaubert, Reza Zamani, Ricky Wang, Rob Donnelly, Rob Honsby, Rocky Smith, Rohan Sahai, Rohit Ramchandani, Romain Huet, Rory Carmichael, Rowan Zellers, Roy Chen, Ruby Chen, Ruslan Nigmatullin, Ryan Cheu, Saachi Jain, Sam Altman, Sam Schoenholz, Sam Toizer, Samuel Miserendino, Sandhini Agarwal, Sara Culver, Scott Ethersmith, Scott Gray, Sean Grove, Sean Metzger, Shamez Hermani, Shantanu Jain, Shengjia Zhao, Sherwin Wu, Shino Jomoto, Shirong Wu, Shuaiqi, Xia, Sonia Phene, Spencer Papay, Srinivas Narayanan, Steve Coffey, Steve Lee, Stewart Hall, Suchir Balaji, Tal Broda, Tal Stramer, Tao Xu, Tarun Gogineni, Taya Christianson, Ted Sanders, Tejal Patwardhan, Thomas Cunninghman, Thomas Degry, Thomas Dimson, Thomas Raoux, Thomas Shadwell, Tianhao Zheng, Todd Underwood, Todor Markov, Toki Sherbakov, Tom Rubin, Tom Stasi, Tomer Kaftan, Tristan Heywood, Troy Peterson, Tyce Walters, Tyna Eloundou, Valerie Qi, Veit Moeller, Vinnie Monaco, Vishal Kuo, Vlad Fomenko, Wayne Chang, Weiyi Zheng, Wenda Zhou, Wesam Manassra, Will Sheu, Wojciech Zaremba, Yash Patil, Yilei Qian, Yongjik Kim, Youlong Cheng, Yu Zhang, Yuchen He, Yuchen Zhang, Yujia Jin, Yunxing Dai, Yury Malkov

arXiv:2410.21276v1 »Full PDF »
GPT-4o is an autoregressive omni model that accepts as input any combination of text, audio, image, and video, and generates any combination of text, audio, and image outputs. It's trained end-to-end across text, vision, and audio, meaning all inputs and outputs are processed by the same neural network. GPT-4o can respond to audio inputs in as little as 232 milliseconds, with an average of 320 milliseconds, which is similar to human response time in conversation. It matches GPT-4 Turbo performance on text in English and code, with significant improvement on text in non-English languages, while also being much faster and 50\% cheaper in the API. GPT-4o is especially better at vision and audio understanding compared to existing models. In line with our commitment to building AI safely and consistent with our voluntary commitments to the White House, we are sharing the GPT-4o System Card, which includes our Preparedness Framework evaluations. In this System Card, we provide a detailed look at GPT-4o's capabilities, limitations, and safety evaluations across multiple categories, focusing on speech-to-speech while also evaluating text and image capabilities, and measures we've implemented to ensure the model is safe and aligned. We also include third-party assessments on dangerous capabilities, as well as discussion of potential societal impacts of GPT-4o's text and vision capabilities.Abstract

Artificial Intelligence and Life in 2030: The One Hundred Year Study on Artificial Intelligence

Peter Stone, Rodney Brooks, Erik Brynjolfsson, Ryan Calo, Oren Etzioni, Greg Hager, Julia Hirschberg, Shivaram Kalyanakrishnan, Ece Kamar, Sarit Kraus, Kevin Leyton-Brown, David Parkes, William Press, AnnaLee Saxenian, Julie Shah, Milind Tambe, Astro Teller

arXiv:2211.06318v1 »Full PDF »

52 pages, https://ai100.stanford.edu/2016-report

In September 2016, Stanford's "One Hundred Year Study on Artificial Intelligence" project (AI100) issued the first report of its planned long-term periodic assessment of artificial intelligence (AI) and its impact on society. It was written by a panel of 17 study authors, each of whom is deeply rooted in AI research, chaired by Peter Stone of the University of Texas at Austin. The report, entitled "Artificial Intelligence and Life in 2030," examines eight domains of typical urban settings on which AI is likely to have impact over the coming years: transportation, home and service robots, healthcare, education, public safety and security, low-resource communities, employment and workplace, and entertainment. It aims to provide the general public with a scientifically and technologically accurate portrayal of the current state of AI and its potential and to help guide decisions in industry and governments, as well as to inform research and development in the field. The charge for this report was given to the panel by the AI100 Standing Committee, chaired by Barbara Grosz of Harvard University.Abstract

An Adversarial Perspective on Machine Unlearning for AI Safety

Jakub Łucki, Boyi Wei, Yangsibo Huang, Peter Henderson, Florian Tramèr, Javier Rando

arXiv:2409.18025v3 »Full PDF »

Spotlight paper at Neurips 2024 SoLaR workshop

Large language models are finetuned to refuse questions about hazardous knowledge, but these protections can often be bypassed. Unlearning methods aim at completely removing hazardous capabilities from models and make them inaccessible to adversaries. This work challenges the fundamental differences between unlearning and traditional safety post-training from an adversarial perspective. We demonstrate that existing jailbreak methods, previously reported as ineffective against unlearning, can be successful when applied carefully. Furthermore, we develop a variety of adaptive methods that recover most supposedly unlearned capabilities. For instance, we show that finetuning on 10 unrelated examples or removing specific directions in the activation space can recover most hazardous capabilities for models edited with RMU, a state-of-the-art unlearning method. Our findings challenge the robustness of current unlearning approaches and question their advantages over safety training.Abstract

Mixed Strategy Nash Equilibrium for Crowd Navigation

Max M. Sun, Francesca Baldini, Katie Hughes, Peter Trautman, Todd Murphey

arXiv:2403.01537v5 »Full PDF »

Accepted to The International Journal of Robotics Research (IJRR)

Robots navigating in crowded areas should negotiate free space with humans rather than fully controlling collision avoidance, as this can lead to freezing behavior. Game theory provides a framework for the robot to reason about potential cooperation from humans for collision avoidance during path planning. In particular, the mixed strategy Nash equilibrium captures the negotiation behavior under uncertainty, making it well suited for crowd navigation. However, computing the mixed strategy Nash equilibrium is often prohibitively expensive for real-time decision-making. In this paper, we propose an iterative Bayesian update scheme over probability distributions of trajectories. The algorithm simultaneously generates a stochastic plan for the robot and probabilistic predictions of other pedestrians' paths. We prove that the proposed algorithm is equivalent to solving a mixed strategy game for crowd navigation, and the algorithm guarantees the recovery of the global Nash equilibrium of the game. We name our algorithm Bayesian Recursive Nash Equilibrium (BRNE) and develop a real-time model prediction crowd navigation framework. Since BRNE is not solving a general-purpose mixed strategy Nash equilibrium but a tailored formula specifically for crowd navigation, it can compute the solution in real-time on a low-power embedded computer. We evaluate BRNE in both simulated environments and real-world pedestrian datasets. BRNE consistently outperforms non-learning and learning-based methods regarding safety and navigation efficiency. It also reaches human-level crowd navigation performance in the pedestrian dataset benchmark. Lastly, we demonstrate the practicality of our algorithm with real humans on an untethered quadruped robot with fully onboard perception and computation.Abstract

CurateGPT: A flexible language-model assisted biocuration tool

Harry Caufield, Carlo Kroll, Shawn T O'Neil, Justin T Reese, Marcin P Joachimiak, Harshad Hegde, Nomi L Harris, Madan Krishnamurthy, James A McLaughlin, Damian Smedley, Melissa A Haendel, Peter N Robinson, Christopher J Mungall

arXiv:2411.00046v1 »Full PDF »
Effective data-driven biomedical discovery requires data curation: a time-consuming process of finding, organizing, distilling, integrating, interpreting, annotating, and validating diverse information into a structured form suitable for databases and knowledge bases. Accurate and efficient curation of these digital assets is critical to ensuring that they are FAIR, trustworthy, and sustainable. Unfortunately, expert curators face significant time and resource constraints. The rapid pace of new information being published daily is exceeding their capacity for curation. Generative AI, exemplified by instruction-tuned large language models (LLMs), has opened up new possibilities for assisting human-driven curation. The design philosophy of agents combines the emerging abilities of generative AI with more precise methods. A curator's tasks can be aided by agents for performing reasoning, searching ontologies, and integrating knowledge across external sources, all efforts otherwise requiring extensive manual effort. Our LLM-driven annotation tool, CurateGPT, melds the power of generative AI together with trusted knowledge bases and literature sources. CurateGPT streamlines the curation process, enhancing collaboration and efficiency in common workflows. Compared to direct interaction with an LLM, CurateGPT's agents enable access to information beyond that in the LLM's training data and they provide direct links to the data supporting each claim. This helps curators, researchers, and engineers scale up curation efforts to keep pace with the ever-increasing volume of scientific data.Abstract

IDs for AI Systems

Alan Chan, Noam Kolt, Peter Wills, Usman Anwar, Christian Schroeder de Witt, Nitarshan Rajkumar, Lewis Hammond, David Krueger, Lennart Heim, Markus Anderljung

arXiv:2406.12137v3 »Full PDF »

Under review; accepted to RegML workshop at NeurIPS 2024

AI systems are increasingly pervasive, yet information needed to decide whether and how to engage with them may not exist or be accessible. A user may not be able to verify whether a system has certain safety certifications. An investigator may not know whom to investigate when a system causes an incident. It may not be clear whom to contact to shut down a malfunctioning system. Across a number of domains, IDs address analogous problems by identifying particular entities (e.g., a particular Boeing 747) and providing information about other entities of the same class (e.g., some or all Boeing 747s). We propose a framework in which IDs are ascribed to instances of AI systems (e.g., a particular chat session with Claude 3), and associated information is accessible to parties seeking to interact with that system. We characterize IDs for AI systems, provide concrete examples where IDs could be useful, argue that there could be significant demand for IDs from key actors, analyze how those actors could incentivize ID adoption, explore a potential implementation of our framework for deployers of AI systems, and highlight limitations and risks. IDs seem most warranted in settings where AI systems could have a large impact upon the world, such as in making financial transactions or contacting real humans. With further study, IDs could help to manage a world where AI systems pervade society.Abstract

A Review of Deep Learning Approaches for Non-Invasive Cognitive Impairment Detection

Muath Alsuhaibani, Ali Pourramezan Fard, Jian Sun, Farida Far Poor, Peter S. Pressman, Mohammad H. Mahoor

arXiv:2410.19898v1 »Full PDF »
This review paper explores recent advances in deep learning approaches for non-invasive cognitive impairment detection. We examine various non-invasive indicators of cognitive decline, including speech and language, facial, and motoric mobility. The paper provides an overview of relevant datasets, feature-extracting techniques, and deep-learning architectures applied to this domain. We have analyzed the performance of different methods across modalities and observed that speech and language-based methods generally achieved the highest detection performance. Studies combining acoustic and linguistic features tended to outperform those using a single modality. Facial analysis methods showed promise for visual modalities but were less extensively studied. Most papers focused on binary classification (impaired vs. non-impaired), with fewer addressing multi-class or regression tasks. Transfer learning and pre-trained language models emerged as popular and effective techniques, especially for linguistic analysis. Despite significant progress, several challenges remain, including data standardization and accessibility, model explainability, longitudinal analysis limitations, and clinical adaptation. Lastly, we propose future research directions, such as investigating language-agnostic speech analysis methods, developing multi-modal diagnostic systems, and addressing ethical considerations in AI-assisted healthcare. By synthesizing current trends and identifying key obstacles, this review aims to guide further development of deep learning-based cognitive impairment detection systems to improve early diagnosis and ultimately patient outcomes.Abstract

Assessing the Brittleness of Safety Alignment via Pruning and Low-Rank Modifications

Boyi Wei, Kaixuan Huang, Yangsibo Huang, Tinghao Xie, Xiangyu Qi, Mengzhou Xia, Prateek Mittal, Mengdi Wang, Peter Henderson

arXiv:2402.05162v4 »Full PDF »

22 pages, 9 figures. Project page is available at https://boyiwei.com/alignment-attribution/

Large language models (LLMs) show inherent brittleness in their safety mechanisms, as evidenced by their susceptibility to jailbreaking and even non-malicious fine-tuning. This study explores this brittleness of safety alignment by leveraging pruning and low-rank modifications. We develop methods to identify critical regions that are vital for safety guardrails, and that are disentangled from utility-relevant regions at both the neuron and rank levels. Surprisingly, the isolated regions we find are sparse, comprising about 3% at the parameter level and 2.5% at the rank level. Removing these regions compromises safety without significantly impacting utility, corroborating the inherent brittleness of the model's safety mechanisms. Moreover, we show that LLMs remain vulnerable to low-cost fine-tuning attacks even when modifications to the safety-critical regions are restricted. These findings underscore the urgent need for more robust safety strategies in LLMs.Abstract

Navigation under uncertainty: Trajectory prediction and occlusion reasoning with switching dynamical systems

Ran Wei, Joseph Lee, Shohei Wakayama, Alexander Tschantz, Conor Heins, Christopher Buckley, John Carenbauer, Hari Thiruvengada, Mahault Albarracin, Miguel de Prado, Petter Horling, Peter Winzell, Renjith Rajagopal

arXiv:2410.10653v1 »Full PDF »
Predicting future trajectories of nearby objects, especially under occlusion, is a crucial task in autonomous driving and safe robot navigation. Prior works typically neglect to maintain uncertainty about occluded objects and only predict trajectories of observed objects using high-capacity models such as Transformers trained on large datasets. While these approaches are effective in standard scenarios, they can struggle to generalize to the long-tail, safety-critical scenarios. In this work, we explore a conceptual framework unifying trajectory prediction and occlusion reasoning under the same class of structured probabilistic generative model, namely, switching dynamical systems. We then present some initial experiments illustrating its capabilities using the Waymo open dataset.Abstract

OPTIMA: Optimized Policy for Intelligent Multi-Agent Systems Enables Coordination-Aware Autonomous Vehicles

Rui Du, Kai Zhao, Jinlong Hou, Qiang Zhang, Peter Zhang

arXiv:2410.18112v1 »Full PDF »
Coordination among connected and autonomous vehicles (CAVs) is advancing due to developments in control and communication technologies. However, much of the current work is based on oversimplified and unrealistic task-specific assumptions, which may introduce vulnerabilities. This is critical because CAVs not only interact with their environment but are also integral parts of it. Insufficient exploration can result in policies that carry latent risks, highlighting the need for methods that explore the environment both extensively and efficiently. This work introduces OPTIMA, a novel distributed reinforcement learning framework for cooperative autonomous vehicle tasks. OPTIMA alternates between thorough data sampling from environmental interactions and multi-agent reinforcement learning algorithms to optimize CAV cooperation, emphasizing both safety and efficiency. Our goal is to improve the generality and performance of CAVs in highly complex and crowded scenarios. Furthermore, the industrial-scale distributed training system easily adapts to different algorithms, reward functions, and strategies.Abstract