fairXiv Pronounced fair • kive

16737 latest Fairness/Ethics + ML/AI papers

BehaviorGPT: Smart Agent Simulation for Autonomous Driving with Next-Patch Prediction

Zikang Zhou, Haibo Hu, Xinhong Chen, Jianping Wang, Nan Guan, Kui Wu, Yung-Hui Li, Yu-Kai Huang, Chun Jason Xue

arXiv:2405.17372v3 »Full PDF »

NeurIPS 2024

Simulating realistic behaviors of traffic agents is pivotal for efficiently validating the safety of autonomous driving systems. Existing data-driven simulators primarily use an encoder-decoder architecture to encode the historical trajectories before decoding the future. However, the heterogeneity between encoders and decoders complicates the models, and the manual separation of historical and future trajectories leads to low data utilization. Given these limitations, we propose BehaviorGPT, a homogeneous and fully autoregressive Transformer designed to simulate the sequential behavior of multiple agents. Crucially, our approach discards the traditional separation between "history" and "future" by modeling each time step as the "current" one for motion generation, leading to a simpler, more parameter- and data-efficient agent simulator. We further introduce the Next-Patch Prediction Paradigm (NP3) to mitigate the negative effects of autoregressive modeling, in which models are trained to reason at the patch level of trajectories and capture long-range spatial-temporal interactions. Despite having merely 3M model parameters, BehaviorGPT won first place in the 2024 Waymo Open Sim Agents Challenge with a realism score of 0.7473 and a minADE score of 1.4147, demonstrating its exceptional performance in traffic agent simulation.Abstract

Grade Like a Human: Rethinking Automated Assessment with Large Language Models

Wenjing Xie, Juxin Niu, Chun Jason Xue, Nan Guan

arXiv:2405.19694v1 »Full PDF »
While large language models (LLMs) have been used for automated grading, they have not yet achieved the same level of performance as humans, especially when it comes to grading complex questions. Existing research on this topic focuses on a particular step in the grading procedure: grading using predefined rubrics. However, grading is a multifaceted procedure that encompasses other crucial steps, such as grading rubrics design and post-grading review. There has been a lack of systematic research exploring the potential of LLMs to enhance the entire grading~process. In this paper, we propose an LLM-based grading system that addresses the entire grading procedure, including the following key components: 1) Developing grading rubrics that not only consider the questions but also the student answers, which can more accurately reflect students' performance. 2) Under the guidance of grading rubrics, providing accurate and consistent scores for each student, along with customized feedback. 3) Conducting post-grading review to better ensure accuracy and fairness. Additionally, we collected a new dataset named OS from a university operating system course and conducted extensive experiments on both our new dataset and the widely used Mohler dataset. Experiments demonstrate the effectiveness of our proposed approach, providing some new insights for developing automated grading systems based on LLMs.Abstract

Ultra-marginal Feature Importance: Learning from Data with Causal Guarantees

Joseph Janssen, Vincent Guan, Elina Robeva

arXiv:2204.09938v5 »Full PDF »
Scientists frequently prioritize learning from data rather than training the best possible model; however, research in machine learning often prioritizes the latter. Marginal contribution feature importance (MCI) was developed to break this trend by providing a useful framework for quantifying the relationships in data. In this work, we aim to improve upon the theoretical properties, performance, and runtime of MCI by introducing ultra-marginal feature importance (UMFI), which uses dependence removal techniques from the AI fairness literature as its foundation. We first propose axioms for feature importance methods that seek to explain the causal and associative relationships in data, and we prove that UMFI satisfies these axioms under basic assumptions. We then show on real and simulated data that UMFI performs better than MCI, especially in the presence of correlated interactions and unrelated features, while partially learning the structure of the causal graph and reducing the exponential runtime of MCI to super-linear.Abstract

When AI Eats Itself: On the Caveats of AI Autophagy

Xiaodan Xing, Fadong Shi, Jiahao Huang, Yinzhe Wu, Yang Nan, Sheng Zhang, Yingying Fang, Mike Roberts, Carola-Bibiane Schönlieb, Javier Del Ser, Guang Yang

arXiv:2405.09597v3 »Full PDF »
Generative Artificial Intelligence (AI) technologies and large models are producing realistic outputs across various domains, such as images, text, speech, and music. Creating these advanced generative models requires significant resources, particularly large and high-quality datasets. To minimise training expenses, many algorithm developers use data created by the models themselves as a cost-effective training solution. However, not all synthetic data effectively improve model performance, necessitating a strategic balance in the use of real versus synthetic data to optimise outcomes. Currently, the previously well-controlled integration of real and synthetic data is becoming uncontrollable. The widespread and unregulated dissemination of synthetic data online leads to the contamination of datasets traditionally compiled through web scraping, now mixed with unlabeled synthetic data. This trend, known as the AI autophagy phenomenon, suggests a future where generative AI systems may increasingly consume their own outputs without discernment, raising concerns about model performance, reliability, and ethical implications. What will happen if generative AI continuously consumes itself without discernment? What measures can we take to mitigate the potential adverse effects? To address these research questions, this study examines the existing literature, delving into the consequences of AI autophagy, analyzing the associated risks, and exploring strategies to mitigate its impact. Our aim is to provide a comprehensive perspective on this phenomenon advocating for a balanced approach that promotes the sustainable development of generative AI technologies in the era of large models.Abstract

Flexible Fairness-Aware Learning via Inverse Conditional Permutation

Yuheng Lai, Leying Guan

arXiv:2404.05678v3 »Full PDF »
Equalized odds, as a popular notion of algorithmic fairness, aims to ensure that sensitive variables, such as race and gender, do not unfairly influence the algorithm's prediction when conditioning on the true outcome. Despite rapid advancements, current research primarily focuses on equalized odds violations caused by a single sensitive attribute, leaving the challenge of simultaneously accounting for multiple attributes largely unaddressed. We bridge this gap by introducing an in-processing fairness-aware learning approach, FairICP, which integrates adversarial learning with a novel inverse conditional permutation scheme. FairICP offers a theoretically justified, flexible, and efficient scheme to promote equalized odds under fairness conditions described by complex and multidimensional sensitive attributes. The efficacy and adaptability of our method are demonstrated through both simulation studies and empirical analyses of real-world datasets.Abstract

Towards Heterogeneous Long-tailed Learning: Benchmarking, Metrics, and Toolbox

Haohui Wang, Weijie Guan, Jianpeng Chen, Zi Wang, Dawei Zhou

arXiv:2307.08235v2 »Full PDF »

Accepted at NeurIPS 2024 Datasets and Benchmarks

Long-tailed data distributions pose challenges for a variety of domains like e-commerce, finance, biomedical science, and cyber security, where the performance of machine learning models is often dominated by head categories while tail categories are inadequately learned. This work aims to provide a systematic view of long-tailed learning with regard to three pivotal angles: (A1) the characterization of data long-tailedness, (A2) the data complexity of various domains, and (A3) the heterogeneity of emerging tasks. We develop HeroLT, a comprehensive long-tailed learning benchmark integrating 18 state-of-the-art algorithms, 10 evaluation metrics, and 17 real-world datasets across 6 tasks and 4 data modalities. HeroLT with novel angles and extensive experiments (315 in total) enables effective and fair evaluation of newly proposed methods compared with existing baselines on varying dataset types. Finally, we conclude by highlighting the significant applications of long-tailed learning and identifying several promising future directions. For accessibility and reproducibility, we open-source our benchmark HeroLT and corresponding results at https://github.com/SSSKJ/HeroLT.Abstract

V2X-Assisted Distributed Computing and Control Framework for Connected and Automated Vehicles under Ramp Merging Scenario

Qiong Wu, Jiahou Chu, Pingyi Fan, Kezhi Wang, Nan Cheng, Wen Chen, Khaled B. Letaief

arXiv:2410.22987v1 »Full PDF »

This paper has been submitted to IEEE Journal. The source code has been released at: https://git...

This paper investigates distributed computing and cooperative control of connected and automated vehicles (CAVs) in ramp merging scenario under transportation cyber-physical system. Firstly, a centralized cooperative trajectory planning problem is formulated subject to the safely constraints and traffic performance in ramp merging scenario, where the trajectories of all vehicles are jointly optimized. To get rid of the reliance on a central controller and reduce computation time, a distributed solution to this problem implemented among CAVs through Vehicles-to-Everything (V2X) communication is proposed. Unlike existing method, our method can distribute the computational task among CAVs and carry out parallel solving through V2X communication. Then, a multi-vehicles model predictive control (MPC) problem aimed at maximizing system stability and minimizing control input is formulated based on the solution of the first problem subject to strict safety constants and input limits. Due to these complex constraints, this problem becomes high-dimensional, centralized, and non-convex. To solve it in a short time, a decomposition and convex reformulation method, namely distributed cooperative iterative model predictive control (DCIMPC), is proposed. This method leverages the communication capability of CAVs to decompose the problem, making full use of the computational resources on vehicles to achieve fast solutions and distributed control. The two above problems with their corresponding solving methods form the systemic framework of the V2X assisted distributed computing and control. Simulations have been conducted to evaluate the framework's convergence, safety, and solving speed. Additionally, extra experiments are conducted to validate the performance of DCIMPC. The results show that our method can greatly improve computation speed without sacrificing system performance.Abstract

Beyond Efficiency: A Systematic Survey of Resource-Efficient Large Language Models

Guangji Bai, Zheng Chai, Chen Ling, Shiyu Wang, Jiaying Lu, Nan Zhang, Tingwei Shi, Ziyang Yu, Mengdan Zhu, Yifei Zhang, Carl Yang, Yue Cheng, Liang Zhao

arXiv:2401.00625v3 »Full PDF »

GitHub repo: https://github.com/tiingweii-shii/Awesome-Resource-Efficient-LLM-Papers

The burgeoning field of Large Language Models (LLMs), exemplified by sophisticated models like OpenAI's ChatGPT, represents a significant advancement in artificial intelligence. These models, however, bring forth substantial challenges in the high consumption of computational, memory, energy, and financial resources, especially in environments with limited resource capabilities. This survey aims to systematically address these challenges by reviewing a broad spectrum of techniques designed to enhance the resource efficiency of LLMs. We categorize methods based on their optimization focus: computational, memory, energy, financial, and network resources and their applicability across various stages of an LLM's lifecycle, including architecture design, pretraining, finetuning, and system design. Additionally, the survey introduces a nuanced categorization of resource efficiency techniques by their specific resource types, which uncovers the intricate relationships and mappings between various resources and corresponding optimization techniques. A standardized set of evaluation metrics and datasets is also presented to facilitate consistent and fair comparisons across different models and techniques. By offering a comprehensive overview of the current sota and identifying open research avenues, this survey serves as a foundational reference for researchers and practitioners, aiding them in developing more sustainable and efficient LLMs in a rapidly evolving landscape.Abstract

Towards Fair Graph Representation Learning in Social Networks

Guixian Zhang, Guan Yuan, Debo Cheng, Lin Liu, Jiuyong Li, Shichao Zhang

arXiv:2410.11493v2 »Full PDF »
With the widespread use of Graph Neural Networks (GNNs) for representation learning from network data, the fairness of GNN models has raised great attention lately. Fair GNNs aim to ensure that node representations can be accurately classified, but not easily associated with a specific group. Existing advanced approaches essentially enhance the generalisation of node representation in combination with data augmentation strategy, and do not directly impose constraints on the fairness of GNNs. In this work, we identify that a fundamental reason for the unfairness of GNNs in social network learning is the phenomenon of social homophily, i.e., users in the same group are more inclined to congregate. The message-passing mechanism of GNNs can cause users in the same group to have similar representations due to social homophily, leading model predictions to establish spurious correlations with sensitive attributes. Inspired by this reason, we propose a method called Equity-Aware GNN (EAGNN) towards fair graph representation learning. Specifically, to ensure that model predictions are independent of sensitive attributes while maintaining prediction performance, we introduce constraints for fair representation learning based on three principles: sufficiency, independence, and separation. We theoretically demonstrate that our EAGNN method can effectively achieve group fairness. Extensive experiments on three datasets with varying levels of social homophily illustrate that our EAGNN method achieves the state-of-the-art performance across two fairness metrics and offers competitive effectiveness.Abstract

Class-RAG: Content Moderation with Retrieval Augmented Generation

Jianfa Chen, Emily Shen, Trupti Bavalatti, Xiaowen Lin, Yongkai Wang, Shuming Hu, Harihar Subramanyam, Ksheeraj Sai Vepuri, Ming Jiang, Ji Qi, Li Chen, Nan Jiang, Ankit Jain

arXiv:2410.14881v1 »Full PDF »

11 pages, submit to ACL

Robust content moderation classifiers are essential for the safety of Generative AI systems. Content moderation, or safety classification, is notoriously ambiguous: differences between safe and unsafe inputs are often extremely subtle, making it difficult for classifiers (and indeed, even humans) to properly distinguish violating vs. benign samples without further context or explanation. Furthermore, as these technologies are deployed across various applications and audiences, scaling risk discovery and mitigation through continuous model fine-tuning becomes increasingly challenging and costly. To address these challenges, we propose a Classification approach employing Retrieval-Augmented Generation (Class-RAG). Class-RAG extends the capability of its base LLM through access to a retrieval library which can be dynamically updated to enable semantic hotfixing for immediate, flexible risk mitigation. Compared to traditional fine-tuned models, Class-RAG demonstrates flexibility and transparency in decision-making. As evidenced by empirical studies, Class-RAG outperforms on classification and is more robust against adversarial attack. Besides, our findings suggest that Class-RAG performance scales with retrieval library size, indicating that increasing the library size is a viable and low-cost approach to improve content moderation.Abstract