fairXiv Pronounced fair • kive

16737 latest Fairness/Ethics + ML/AI papers

BEEAR: Embedding-based Adversarial Removal of Safety Backdoors in Instruction-tuned Language Models

Yi Zeng, Weiyu Sun, Tran Ngoc Huynh, Dawn Song, Bo Li, Ruoxi Jia

arXiv:2406.17092v1 »Full PDF »
Safety backdoor attacks in large language models (LLMs) enable the stealthy triggering of unsafe behaviors while evading detection during normal interactions. The high dimensionality of potential triggers in the token space and the diverse range of malicious behaviors make this a critical challenge. We present BEEAR, a mitigation approach leveraging the insight that backdoor triggers induce relatively uniform drifts in the model's embedding space. Our bi-level optimization method identifies universal embedding perturbations that elicit unwanted behaviors and adjusts the model parameters to reinforce safe behaviors against these perturbations. Experiments show BEEAR reduces the success rate of RLHF time backdoor attacks from >95% to <1% and from 47% to 0% for instruction-tuning time backdoors targeting malicious code generation, without compromising model utility. Requiring only defender-defined safe and unwanted behaviors, BEEAR represents a step towards practical defenses against safety backdoors in LLMs, providing a foundation for further advancements in AI safety and security.Abstract

Capabilities of Gemini Models in Medicine

Khaled Saab, Tao Tu, Wei-Hung Weng, Ryutaro Tanno, David Stutz, Ellery Wulczyn, Fan Zhang, Tim Strother, Chunjong Park, Elahe Vedadi, Juanma Zambrano Chaves, Szu-Yeu Hu, Mike Schaekermann, Aishwarya Kamath, Yong Cheng, David G. T. Barrett, Cathy Cheung, Basil Mustafa, Anil Palepu, Daniel McDuff, Le Hou, Tomer Golany, Luyang Liu, Jean-baptiste Alayrac, Neil Houlsby, Nenad Tomasev, Jan Freyberg, Charles Lau, Jonas Kemp, Jeremy Lai, Shekoofeh Azizi, Kimberly Kanada, SiWai Man, Kavita Kulkarni, Ruoxi Sun, Siamak Shakeri, Luheng He, Ben Caine, Albert Webson, Natasha Latysheva, Melvin Johnson, Philip Mansfield, Jian Lu, Ehud Rivlin, Jesper Anderson, Bradley Green, Renee Wong, Jonathan Krause, Jonathon Shlens, Ewa Dominowska, S. M. Ali Eslami, Katherine Chou, Claire Cui, Oriol Vinyals, Koray Kavukcuoglu, James Manyika, Jeff Dean, Demis Hassabis, Yossi Matias, Dale Webster, Joelle Barral, Greg Corrado, Christopher Semturs, S. Sara Mahdavi, Juraj Gottweis, Alan Karthikesalingam, Vivek Natarajan

arXiv:2404.18416v2 »Full PDF »
Excellence in a wide variety of medical applications poses considerable challenges for AI, requiring advanced reasoning, access to up-to-date medical knowledge and understanding of complex multimodal data. Gemini models, with strong general capabilities in multimodal and long-context reasoning, offer exciting possibilities in medicine. Building on these core strengths of Gemini, we introduce Med-Gemini, a family of highly capable multimodal models that are specialized in medicine with the ability to seamlessly use web search, and that can be efficiently tailored to novel modalities using custom encoders. We evaluate Med-Gemini on 14 medical benchmarks, establishing new state-of-the-art (SoTA) performance on 10 of them, and surpass the GPT-4 model family on every benchmark where a direct comparison is viable, often by a wide margin. On the popular MedQA (USMLE) benchmark, our best-performing Med-Gemini model achieves SoTA performance of 91.1% accuracy, using a novel uncertainty-guided search strategy. On 7 multimodal benchmarks including NEJM Image Challenges and MMMU (health & medicine), Med-Gemini improves over GPT-4V by an average relative margin of 44.5%. We demonstrate the effectiveness of Med-Gemini's long-context capabilities through SoTA performance on a needle-in-a-haystack retrieval task from long de-identified health records and medical video question answering, surpassing prior bespoke methods using only in-context learning. Finally, Med-Gemini's performance suggests real-world utility by surpassing human experts on tasks such as medical text summarization, alongside demonstrations of promising potential for multimodal medical dialogue, medical research and education. Taken together, our results offer compelling evidence for Med-Gemini's potential, although further rigorous evaluation will be crucial before real-world deployment in this safety-critical domain.Abstract

RAI4IoE: Responsible AI for Enabling the Internet of Energy

Minhui Xue, Surya Nepal, Ling Liu, Subbu Sethuvenkatraman, Xingliang Yuan, Carsten Rudolph, Ruoxi Sun, Greg Eisenhauer

arXiv:2309.11691v1 »Full PDF »

Accepted to IEEE International Conference on Trust, Privacy and Security in Intelligent Systems, a...

This paper plans to develop an Equitable and Responsible AI framework with enabling techniques and algorithms for the Internet of Energy (IoE), in short, RAI4IoE. The energy sector is going through substantial changes fueled by two key drivers: building a zero-carbon energy sector and the digital transformation of the energy infrastructure. We expect to see the convergence of these two drivers resulting in the IoE, where renewable distributed energy resources (DERs), such as electric cars, storage batteries, wind turbines and photovoltaics (PV), can be connected and integrated for reliable energy distribution by leveraging advanced 5G-6G networks and AI technology. This allows DER owners as prosumers to participate in the energy market and derive economic incentives. DERs are inherently asset-driven and face equitable challenges (i.e., fair, diverse and inclusive). Without equitable access, privileged individuals, groups and organizations can participate and benefit at the cost of disadvantaged groups. The real-time management of DER resources not only brings out the equity problem to the IoE, it also collects highly sensitive location, time, activity dependent data, which requires to be handled responsibly (e.g., privacy, security and safety), for AI-enhanced predictions, optimization and prioritization services, and automated management of flexible resources. The vision of our project is to ensure equitable participation of the community members and responsible use of their data in IoE so that it could reap the benefits of advances in AI to provide safe, reliable and sustainable energy services.Abstract

DLUE: Benchmarking Document Language Understanding

Ruoxi Xu, Hongyu Lin, Xinyan Guan, Xianpei Han, Yingfei Sun, Le Sun

arXiv:2305.09520v1 »Full PDF »
Understanding documents is central to many real-world tasks but remains a challenging topic. Unfortunately, there is no well-established consensus on how to comprehensively evaluate document understanding abilities, which significantly hinders the fair comparison and measuring the progress of the field. To benchmark document understanding researches, this paper summarizes four representative abilities, i.e., document classification, document structural analysis, document information extraction, and document transcription. Under the new evaluation framework, we propose \textbf{Document Language Understanding Evaluation} -- \textbf{DLUE}, a new task suite which covers a wide-range of tasks in various forms, domains and document genres. We also systematically evaluate six well-established transformer models on DLUE, and find that due to the lengthy content, complicated underlying structure and dispersed knowledge, document understanding is still far from being solved, and currently there is no neural architecture that dominates all tasks, raising requirements for a universal document understanding architecture.Abstract

Is Your LLM Secretly a World Model of the Internet? Model-Based Planning for Web Agents

Yu Gu, Boyuan Zheng, Boyu Gou, Kai Zhang, Cheng Chang, Sanjari Srivastava, Yanan Xie, Peng Qi, Huan Sun, Yu Su

arXiv:2411.06559v1 »Full PDF »

18 pages, 6 figures, 4 tables

Language agents have demonstrated promising capabilities in automating web-based tasks, though their current reactive approaches still underperform largely compared to humans. While incorporating advanced planning algorithms, particularly tree search methods, could enhance these agents' performance, implementing tree search directly on live websites poses significant safety risks and practical constraints due to irreversible actions such as confirming a purchase. In this paper, we introduce a novel paradigm that augments language agents with model-based planning, pioneering the innovative use of large language models (LLMs) as world models in complex web environments. Our method, WebDreamer, builds on the key insight that LLMs inherently encode comprehensive knowledge about website structures and functionalities. Specifically, WebDreamer uses LLMs to simulate outcomes for each candidate action (e.g., "what would happen if I click this button?") using natural language descriptions, and then evaluates these imagined outcomes to determine the optimal action at each step. Empirical results on two representative web agent benchmarks with online interaction -- VisualWebArena and Mind2Web-live -- demonstrate that WebDreamer achieves substantial improvements over reactive baselines. By establishing the viability of LLMs as world models in web environments, this work lays the groundwork for a paradigm shift in automated web interaction. More broadly, our findings open exciting new avenues for future research into 1) optimizing LLMs specifically for world modeling in complex, dynamic environments, and 2) model-based speculative planning for language agents.Abstract

Integrating Object Detection Modality into Visual Language Model for Enhanced Autonomous Driving Agent

Linfeng He, Yiming Sun, Sihao Wu, Jiaxu Liu, Xiaowei Huang

arXiv:2411.05898v1 »Full PDF »

accepted by SafeGenAI workshop of NeurIPS 2024

In this paper, we propose a novel framework for enhancing visual comprehension in autonomous driving systems by integrating visual language models (VLMs) with additional visual perception module specialised in object detection. We extend the Llama-Adapter architecture by incorporating a YOLOS-based detection network alongside the CLIP perception network, addressing limitations in object detection and localisation. Our approach introduces camera ID-separators to improve multi-view processing, crucial for comprehensive environmental awareness. Experiments on the DriveLM visual question answering challenge demonstrate significant improvements over baseline models, with enhanced performance in ChatGPT scores, BLEU scores, and CIDEr metrics, indicating closeness of model answer to ground truth. Our method represents a promising step towards more capable and interpretable autonomous driving systems. Possible safety enhancement enabled by detection modality is also discussed.Abstract

Trusting Your AI Agent Emotionally and Cognitively: Development and Validation of a Semantic Differential Scale for AI Trust

Ruoxi Shang, Gary Hsieh, Chirag Shah

arXiv:2408.05354v2 »Full PDF »
Trust is not just a cognitive issue but also an emotional one, yet the research in human-AI interactions has primarily focused on the cognitive route of trust development. Recent work has highlighted the importance of studying affective trust towards AI, especially in the context of emerging human-like LLMs-powered conversational agents. However, there is a lack of validated and generalizable measures for the two-dimensional construct of trust in AI agents. To address this gap, we developed and validated a set of 27-item semantic differential scales for affective and cognitive trust through a scenario-based survey study. We then further validated and applied the scale through an experiment study. Our empirical findings showed how the emotional and cognitive aspects of trust interact with each other and collectively shape a person's overall trust in AI agents. Our study methodology and findings also provide insights into the capability of the state-of-art LLMs to foster trust through different routes.Abstract

From Word Vectors to Multimodal Embeddings: Techniques, Applications, and Future Directions For Large Language Models

Charles Zhang, Benji Peng, Xintian Sun, Qian Niu, Junyu Liu, Keyu Chen, Ming Li, Pohsun Feng, Ziqian Bi, Ming Liu, Yichao Zhang, Cheng Fei, Caitlyn Heqi Yin, Lawrence KQ Yan, Tianyang Wang

arXiv:2411.05036v1 »Full PDF »

21 pages

Word embeddings and language models have transformed natural language processing (NLP) by facilitating the representation of linguistic elements in continuous vector spaces. This review visits foundational concepts such as the distributional hypothesis and contextual similarity, tracing the evolution from sparse representations like one-hot encoding to dense embeddings including Word2Vec, GloVe, and fastText. We examine both static and contextualized embeddings, underscoring advancements in models such as ELMo, BERT, and GPT and their adaptations for cross-lingual and personalized applications. The discussion extends to sentence and document embeddings, covering aggregation methods and generative topic models, along with the application of embeddings in multimodal domains, including vision, robotics, and cognitive science. Advanced topics such as model compression, interpretability, numerical encoding, and bias mitigation are analyzed, addressing both technical challenges and ethical implications. Additionally, we identify future research directions, emphasizing the need for scalable training techniques, enhanced interpretability, and robust grounding in non-textual modalities. By synthesizing current methodologies and emerging trends, this survey offers researchers and practitioners an in-depth resource to push the boundaries of embedding-based language models.Abstract

ShieldLM: Empowering LLMs as Aligned, Customizable and Explainable Safety Detectors

Zhexin Zhang, Yida Lu, Jingyuan Ma, Di Zhang, Rui Li, Pei Ke, Hao Sun, Lei Sha, Zhifang Sui, Hongning Wang, Minlie Huang

arXiv:2402.16444v2 »Full PDF »

19 pages. Camera ready version of EMNLP 2024 Findings

The safety of Large Language Models (LLMs) has gained increasing attention in recent years, but there still lacks a comprehensive approach for detecting safety issues within LLMs' responses in an aligned, customizable and explainable manner. In this paper, we propose ShieldLM, an LLM-based safety detector, which aligns with common safety standards, supports customizable detection rules, and provides explanations for its decisions. To train ShieldLM, we compile a large bilingual dataset comprising 14,387 query-response pairs, annotating the safety of responses based on various safety standards. Through extensive experiments, we demonstrate that ShieldLM surpasses strong baselines across four test sets, showcasing remarkable customizability and explainability. Besides performing well on standard detection datasets, ShieldLM has also been shown to be effective as a safety evaluator for advanced LLMs. ShieldLM is released at \url{https://github.com/thu-coai/ShieldLM} to support accurate and explainable safety detection under various safety standards.Abstract

Modeling Uncertainty in 3D Gaussian Splatting through Continuous Semantic Splatting

Joey Wilson, Marcelino Almeida, Min Sun, Sachit Mahajan, Maani Ghaffari, Parker Ewen, Omid Ghasemalizadeh, Cheng-Hao Kuo, Arnie Sen

arXiv:2411.02547v1 »Full PDF »
In this paper, we present a novel algorithm for probabilistically updating and rasterizing semantic maps within 3D Gaussian Splatting (3D-GS). Although previous methods have introduced algorithms which learn to rasterize features in 3D-GS for enhanced scene understanding, 3D-GS can fail without warning which presents a challenge for safety-critical robotic applications. To address this gap, we propose a method which advances the literature of continuous semantic mapping from voxels to ellipsoids, combining the precise structure of 3D-GS with the ability to quantify uncertainty of probabilistic robotic maps. Given a set of images, our algorithm performs a probabilistic semantic update directly on the 3D ellipsoids to obtain an expectation and variance through the use of conjugate priors. We also propose a probabilistic rasterization which returns per-pixel segmentation predictions with quantifiable uncertainty. We compare our method with similar probabilistic voxel-based methods to verify our extension to 3D ellipsoids, and perform ablation studies on uncertainty quantification and temporal smoothing.Abstract