fairXiv Pronounced fair • kive

16737 latest Fairness/Ethics + ML/AI papers

The Responsible Foundation Model Development Cheatsheet: A Review of Tools & Resources

Shayne Longpre, Stella Biderman, Alon Albalak, Hailey Schoelkopf, Daniel McDuff, Sayash Kapoor, Kevin Klyman, Kyle Lo, Gabriel Ilharco, Nay San, Maribeth Rauh, Aviya Skowron, Bertie Vidgen, Laura Weidinger, Arvind Narayanan, Victor Sanh, David Adelani, Percy Liang, Rishi Bommasani, Peter Henderson, Sasha Luccioni, Yacine Jernite, Luca Soldaini

arXiv:2406.16746v3 »Full PDF »
Foundation model development attracts a rapidly expanding body of contributors, scientists, and applications. To help shape responsible development practices, we introduce the Foundation Model Development Cheatsheet: a growing collection of 250+ tools and resources spanning text, vision, and speech modalities. We draw on a large body of prior work to survey resources (e.g. software, documentation, frameworks, guides, and practical tools) that support informed data selection, processing, and understanding, precise and limitation-aware artifact documentation, efficient model training, advance awareness of the environmental impact from training, careful model evaluation of capabilities, risks, and claims, as well as responsible model release, licensing and deployment practices. We hope this curated collection of resources helps guide more responsible development. The process of curating this list, enabled us to review the AI development ecosystem, revealing what tools are critically missing, misused, or over-used in existing practices. We find that (i) tools for data sourcing, model evaluation, and monitoring are critically under-serving ethical and real-world needs, (ii) evaluations for model safety, capabilities, and environmental impact all lack reproducibility and transparency, (iii) text and particularly English-centric analyses continue to dominate over multilingual and multi-modal analyses, and (iv) evaluation of systems, rather than just models, is needed so that capabilities and impact are assessed in context.Abstract

The opportunities and risks of large language models in mental health

Hannah R. Lawrence, Renee A. Schneider, Susan B. Rubin, Maja J. Mataric, Daniel J. McDuff, Megan Jones Bell

arXiv:2403.14814v3 »Full PDF »

15 pages, 2 tables, 4 figures

Global rates of mental health concerns are rising, and there is increasing realization that existing models of mental health care will not adequately expand to meet the demand. With the emergence of large language models (LLMs) has come great optimism regarding their promise to create novel, large-scale solutions to support mental health. Despite their nascence, LLMs have already been applied to mental health related tasks. In this paper, we summarize the extant literature on efforts to use LLMs to provide mental health education, assessment, and intervention and highlight key opportunities for positive impact in each area. We then highlight risks associated with LLMs' application to mental health and encourage the adoption of strategies to mitigate these risks. The urgent need for mental health support must be balanced with responsible development, testing, and deployment of mental health LLMs. It is especially critical to ensure that mental health LLMs are fine-tuned for mental health, enhance mental health equity, and adhere to ethical standards and that people, including those with lived experience with mental health concerns, are involved in all stages from development through deployment. Prioritizing these efforts will minimize potential harms to mental health and maximize the likelihood that LLMs will positively impact mental health globally.Abstract

Towards a Personal Health Large Language Model

Justin Cosentino, Anastasiya Belyaeva, Xin Liu, Nicholas A. Furlotte, Zhun Yang, Chace Lee, Erik Schenck, Yojan Patel, Jian Cui, Logan Douglas Schneider, Robby Bryant, Ryan G. Gomes, Allen Jiang, Roy Lee, Yun Liu, Javier Perez, Jameson K. Rogers, Cathy Speed, Shyam Tailor, Megan Walker, Jeffrey Yu, Tim Althoff, Conor Heneghan, John Hernandez, Mark Malhotra, Leor Stern, Yossi Matias, Greg S. Corrado, Shwetak Patel, Shravya Shetty, Jiening Zhan, Shruthi Prabhakara, Daniel McDuff, Cory Y. McLean

arXiv:2406.06474v1 »Full PDF »

72 pages

In health, most large language model (LLM) research has focused on clinical tasks. However, mobile and wearable devices, which are rarely integrated into such tasks, provide rich, longitudinal data for personal health monitoring. Here we present Personal Health Large Language Model (PH-LLM), fine-tuned from Gemini for understanding and reasoning over numerical time-series personal health data. We created and curated three datasets that test 1) production of personalized insights and recommendations from sleep patterns, physical activity, and physiological responses, 2) expert domain knowledge, and 3) prediction of self-reported sleep outcomes. For the first task we designed 857 case studies in collaboration with domain experts to assess real-world scenarios in sleep and fitness. Through comprehensive evaluation of domain-specific rubrics, we observed that Gemini Ultra 1.0 and PH-LLM are not statistically different from expert performance in fitness and, while experts remain superior for sleep, fine-tuning PH-LLM provided significant improvements in using relevant domain knowledge and personalizing information for sleep insights. We evaluated PH-LLM domain knowledge using multiple choice sleep medicine and fitness examinations. PH-LLM achieved 79% on sleep and 88% on fitness, exceeding average scores from a sample of human experts. Finally, we trained PH-LLM to predict self-reported sleep quality outcomes from textual and multimodal encoding representations of wearable data, and demonstrate that multimodal encoding is required to match performance of specialized discriminative models. Although further development and evaluation are necessary in the safety-critical personal health domain, these results demonstrate both the broad knowledge and capabilities of Gemini models and the benefit of contextualizing physiological data for personal health applications as done with PH-LLM.Abstract

Capabilities of Gemini Models in Medicine

Khaled Saab, Tao Tu, Wei-Hung Weng, Ryutaro Tanno, David Stutz, Ellery Wulczyn, Fan Zhang, Tim Strother, Chunjong Park, Elahe Vedadi, Juanma Zambrano Chaves, Szu-Yeu Hu, Mike Schaekermann, Aishwarya Kamath, Yong Cheng, David G. T. Barrett, Cathy Cheung, Basil Mustafa, Anil Palepu, Daniel McDuff, Le Hou, Tomer Golany, Luyang Liu, Jean-baptiste Alayrac, Neil Houlsby, Nenad Tomasev, Jan Freyberg, Charles Lau, Jonas Kemp, Jeremy Lai, Shekoofeh Azizi, Kimberly Kanada, SiWai Man, Kavita Kulkarni, Ruoxi Sun, Siamak Shakeri, Luheng He, Ben Caine, Albert Webson, Natasha Latysheva, Melvin Johnson, Philip Mansfield, Jian Lu, Ehud Rivlin, Jesper Anderson, Bradley Green, Renee Wong, Jonathan Krause, Jonathon Shlens, Ewa Dominowska, S. M. Ali Eslami, Katherine Chou, Claire Cui, Oriol Vinyals, Koray Kavukcuoglu, James Manyika, Jeff Dean, Demis Hassabis, Yossi Matias, Dale Webster, Joelle Barral, Greg Corrado, Christopher Semturs, S. Sara Mahdavi, Juraj Gottweis, Alan Karthikesalingam, Vivek Natarajan

arXiv:2404.18416v2 »Full PDF »
Excellence in a wide variety of medical applications poses considerable challenges for AI, requiring advanced reasoning, access to up-to-date medical knowledge and understanding of complex multimodal data. Gemini models, with strong general capabilities in multimodal and long-context reasoning, offer exciting possibilities in medicine. Building on these core strengths of Gemini, we introduce Med-Gemini, a family of highly capable multimodal models that are specialized in medicine with the ability to seamlessly use web search, and that can be efficiently tailored to novel modalities using custom encoders. We evaluate Med-Gemini on 14 medical benchmarks, establishing new state-of-the-art (SoTA) performance on 10 of them, and surpass the GPT-4 model family on every benchmark where a direct comparison is viable, often by a wide margin. On the popular MedQA (USMLE) benchmark, our best-performing Med-Gemini model achieves SoTA performance of 91.1% accuracy, using a novel uncertainty-guided search strategy. On 7 multimodal benchmarks including NEJM Image Challenges and MMMU (health & medicine), Med-Gemini improves over GPT-4V by an average relative margin of 44.5%. We demonstrate the effectiveness of Med-Gemini's long-context capabilities through SoTA performance on a needle-in-a-haystack retrieval task from long de-identified health records and medical video question answering, surpassing prior bespoke methods using only in-context learning. Finally, Med-Gemini's performance suggests real-world utility by surpassing human experts on tasks such as medical text summarization, alongside demonstrations of promising potential for multimodal medical dialogue, medical research and education. Taken together, our results offer compelling evidence for Med-Gemini's potential, although further rigorous evaluation will be crucial before real-world deployment in this safety-critical domain.Abstract

Synthetic Data in Healthcare

Daniel McDuff, Theodore Curran, Achuta Kadambi

arXiv:2304.03243v1 »Full PDF »
Synthetic data are becoming a critical tool for building artificially intelligent systems. Simulators provide a way of generating data systematically and at scale. These data can then be used either exclusively, or in conjunction with real data, for training and testing systems. Synthetic data are particularly attractive in cases where the availability of ``real'' training examples might be a bottleneck. While the volume of data in healthcare is growing exponentially, creating datasets for novel tasks and/or that reflect a diverse set of conditions and causal relationships is not trivial. Furthermore, these data are highly sensitive and often patient specific. Recent research has begun to illustrate the potential for synthetic data in many areas of medicine, but no systematic review of the literature exists. In this paper, we present the cases for physical and statistical simulations for creating data and the proposed applications in healthcare and medicine. We discuss that while synthetics can promote privacy, equity, safety and continual and causal learning, they also run the risk of introducing flaws, blind spots and propagating or exaggerating biases.Abstract

Behavioral Use Licensing for Responsible AI

Danish Contractor, Daniel McDuff, Julia Haines, Jenny Lee, Christopher Hines, Brent Hecht, Nicholas Vincent, Hanlin Li

arXiv:2011.03116v2 »Full PDF »

Paper published at ACM FAccT 2022

With the growing reliance on artificial intelligence (AI) for many different applications, the sharing of code, data, and models is important to ensure the replicability and democratization of scientific knowledge. Many high-profile academic publishing venues expect code and models to be submitted and released with papers. Furthermore, developers often want to release these assets to encourage development of technology that leverages their frameworks and services. A number of organizations have expressed concerns about the inappropriate or irresponsible use of AI and have proposed ethical guidelines around the application of such systems. While such guidelines can help set norms and shape policy, they are not easily enforceable. In this paper, we advocate the use of licensing to enable legally enforceable behavioral use conditions on software and code and provide several case studies that demonstrate the feasibility of behavioral use licensing. We envision how licensing may be implemented in accordance with existing responsible AI guidelines.Abstract

CausalCity: Complex Simulations with Agency for Causal Discovery and Reasoning

Daniel McDuff, Yale Song, Jiyoung Lee, Vibhav Vineet, Sai Vemprala, Nicholas Gyde, Hadi Salman, Shuang Ma, Kwanghoon Sohn, Ashish Kapoor

arXiv:2106.13364v1 »Full PDF »
The ability to perform causal and counterfactual reasoning are central properties of human intelligence. Decision-making systems that can perform these types of reasoning have the potential to be more generalizable and interpretable. Simulations have helped advance the state-of-the-art in this domain, by providing the ability to systematically vary parameters (e.g., confounders) and generate examples of the outcomes in the case of counterfactual scenarios. However, simulating complex temporal causal events in multi-agent scenarios, such as those that exist in driving and vehicle navigation, is challenging. To help address this, we present a high-fidelity simulation environment that is designed for developing algorithms for causal discovery and counterfactual reasoning in the safety-critical context. A core component of our work is to introduce \textit{agency}, such that it is simple to define and create complex scenarios using high-level definitions. The vehicles then operate with agency to complete these objectives, meaning low-level behaviors need only be controlled if necessary. We perform experiments with three state-of-the-art methods to create baselines and highlight the affordances of this environment. Finally, we highlight challenges and opportunities for future work.Abstract

Incorporating Human Explanations for Robust Hate Speech Detection

Jennifer L. Chen, Faisal Ladhak, Daniel Li, Noémie Elhadad

arXiv:2411.06213v1 »Full PDF »

2021 ACL Unimplicit Workshop

Given the black-box nature and complexity of large transformer language models (LM), concerns about generalizability and robustness present ethical implications for domains such as hate speech (HS) detection. Using the content rich Social Bias Frames dataset, containing human-annotated stereotypes, intent, and targeted groups, we develop a three stage analysis to evaluate if LMs faithfully assess hate speech. First, we observe the need for modeling contextually grounded stereotype intents to capture implicit semantic meaning. Next, we design a new task, Stereotype Intent Entailment (SIE), which encourages a model to contextually understand stereotype presence. Finally, through ablation tests and user studies, we find a SIE objective improves content understanding, but challenges remain in modeling implicit intent.Abstract

Towards evaluations-based safety cases for AI scheming

Mikita Balesni, Marius Hobbhahn, David Lindner, Alexander Meinke, Tomek Korbak, Joshua Clymer, Buck Shlegeris, Jérémy Scheurer, Charlotte Stix, Rusheb Shah, Nicholas Goldowsky-Dill, Dan Braun, Bilal Chughtai, Owain Evans, Daniel Kokotajlo, Lucius Bushnaq

arXiv:2411.03336v2 »Full PDF »
We sketch how developers of frontier AI systems could construct a structured rationale -- a 'safety case' -- that an AI system is unlikely to cause catastrophic outcomes through scheming. Scheming is a potential threat model where AI systems could pursue misaligned goals covertly, hiding their true capabilities and objectives. In this report, we propose three arguments that safety cases could use in relation to scheming. For each argument we sketch how evidence could be gathered from empirical evaluations, and what assumptions would need to be met to provide strong assurance. First, developers of frontier AI systems could argue that AI systems are not capable of scheming (Scheming Inability). Second, one could argue that AI systems are not capable of posing harm through scheming (Harm Inability). Third, one could argue that control measures around the AI systems would prevent unacceptable outcomes even if the AI systems intentionally attempted to subvert them (Harm Control). Additionally, we discuss how safety cases might be supported by evidence that an AI system is reasonably aligned with its developers (Alignment). Finally, we point out that many of the assumptions required to make these safety arguments have not been confidently satisfied to date and require making progress on multiple open research problems.Abstract

Comparing Fairness of Generative Mobility Models

Daniel Wang, Jack McFarland, Afra Mashhadi, Ekin Ugurel

arXiv:2411.04453v1 »Full PDF »

2 pages, Accepted at the Network Mobility (NetMob) 2024 conference

This work examines the fairness of generative mobility models, addressing the often overlooked dimension of equity in model performance across geographic regions. Predictive models built on crowd flow data are instrumental in understanding urban structures and movement patterns; however, they risk embedding biases, particularly in spatiotemporal contexts where model performance may reflect and reinforce existing inequities tied to geographic distribution. We propose a novel framework for assessing fairness by measuring the utility and equity of generated traces. Utility is assessed via the Common Part of Commuters (CPC), a similarity metric comparing generated and real mobility flows, while fairness is evaluated using demographic parity. By reformulating demographic parity to reflect the difference in CPC distribution between two groups, our analysis reveals disparities in how various models encode biases present in the underlying data. We utilized four models (Gravity, Radiation, Deep Gravity, and Non-linear Gravity) and our results indicate that traditional gravity and radiation models produce fairer outcomes, although Deep Gravity achieves higher CPC. This disparity underscores a trade-off between model accuracy and equity, with the feature-rich Deep Gravity model amplifying pre-existing biases in community representations. Our findings emphasize the importance of integrating fairness metrics in mobility modeling to avoid perpetuating inequities.Abstract