Processing math: 100%

fairXiv Pronounced fair • kive

16737 latest Fairness/Ethics + ML/AI papers

JailbreakBench: An Open Robustness Benchmark for Jailbreaking Large Language Models

Patrick Chao, Edoardo Debenedetti, Alexander Robey, Maksym Andriushchenko, Francesco Croce, Vikash Sehwag, Edgar Dobriban, Nicolas Flammarion, George J. Pappas, Florian Tramer, Hamed Hassani, Eric Wong

arXiv:2404.01318v5 »Full PDF »

The camera-ready version of JailbreakBench v1.0 (accepted at NeurIPS 2024 Datasets and Benchmarks ...

Jailbreak attacks cause large language models (LLMs) to generate harmful, unethical, or otherwise objectionable content. Evaluating these attacks presents a number of challenges, which the current collection of benchmarks and evaluation techniques do not adequately address. First, there is no clear standard of practice regarding jailbreaking evaluation. Second, existing works compute costs and success rates in incomparable ways. And third, numerous works are not reproducible, as they withhold adversarial prompts, involve closed-source code, or rely on evolving proprietary APIs. To address these challenges, we introduce JailbreakBench, an open-sourced benchmark with the following components: (1) an evolving repository of state-of-the-art adversarial prompts, which we refer to as jailbreak artifacts; (2) a jailbreaking dataset comprising 100 behaviors -- both original and sourced from prior work (Zou et al., 2023; Mazeika et al., 2023, 2024) -- which align with OpenAI's usage policies; (3) a standardized evaluation framework at https://github.com/JailbreakBench/jailbreakbench that includes a clearly defined threat model, system prompts, chat templates, and scoring functions; and (4) a leaderboard at https://jailbreakbench.github.io/ that tracks the performance of attacks and defenses for various LLMs. We have carefully considered the potential ethical implications of releasing this benchmark, and believe that it will be a net positive for the community.Abstract

AI Risk Management Should Incorporate Both Safety and Security

Xiangyu Qi, Yangsibo Huang, Yi Zeng, Edoardo Debenedetti, Jonas Geiping, Luxi He, Kaixuan Huang, Udari Madhushani, Vikash Sehwag, Weijia Shi, Boyi Wei, Tinghao Xie, Danqi Chen, Pin-Yu Chen, Jeffrey Ding, Ruoxi Jia, Jiaqi Ma, Arvind Narayanan, Weijie J Su, Mengdi Wang, Chaowei Xiao, Bo Li, Dawn Song, Peter Henderson, Prateek Mittal

arXiv:2405.19524v1 »Full PDF »
The exposure of security vulnerabilities in safety-aligned language models, e.g., susceptibility to adversarial attacks, has shed light on the intricate interplay between AI safety and AI security. Although the two disciplines now come together under the overarching goal of AI risk management, they have historically evolved separately, giving rise to differing perspectives. Therefore, in this paper, we advocate that stakeholders in AI risk management should be aware of the nuances, synergies, and interplay between safety and security, and unambiguously take into account the perspectives of both disciplines in order to devise mostly effective and holistic risk mitigation approaches. Unfortunately, this vision is often obfuscated, as the definitions of the basic concepts of "safety" and "security" themselves are often inconsistent and lack consensus across communities. With AI risk management being increasingly cross-disciplinary, this issue is particularly salient. In light of this conceptual challenge, we introduce a unified reference framework to clarify the differences and interplay between AI safety and AI security, aiming to facilitate a shared understanding and effective collaboration across communities.Abstract

RobustBench: a standardized adversarial robustness benchmark

Francesco Croce, Maksym Andriushchenko, Vikash Sehwag, Edoardo Debenedetti, Nicolas Flammarion, Mung Chiang, Prateek Mittal, Matthias Hein

arXiv:2010.09670v3 »Full PDF »

The camera-ready version accepted at the NeurIPS'21 Datasets and Benchmarks Track: 120+ evaluation...

As a research community, we are still lacking a systematic understanding of the progress on adversarial robustness which often makes it hard to identify the most promising ideas in training robust models. A key challenge in benchmarking robustness is that its evaluation is often error-prone leading to robustness overestimation. Our goal is to establish a standardized benchmark of adversarial robustness, which as accurately as possible reflects the robustness of the considered models within a reasonable computational budget. To this end, we start by considering the image classification task and introduce restrictions (possibly loosened in the future) on the allowed models. We evaluate adversarial robustness with AutoAttack, an ensemble of white- and black-box attacks, which was recently shown in a large-scale study to improve almost all robustness evaluations compared to the original publications. To prevent overadaptation of new defenses to AutoAttack, we welcome external evaluations based on adaptive attacks, especially where AutoAttack flags a potential overestimation of robustness. Our leaderboard, hosted at https://robustbench.github.io/, contains evaluations of 120+ models and aims at reflecting the current state of the art in image classification on a set of well-defined tasks in - and 2-threat models and on common corruptions, with possible extensions in the future. Additionally, we open-source the library https://github.com/RobustBench/robustbench that provides unified access to 80+ robust models to facilitate their downstream applications. Finally, based on the collected models, we analyze the impact of robustness on the performance on distribution shifts, calibration, out-of-distribution detection, fairness, privacy leakage, smoothness, and transferability.Abstract

HYDRA: Pruning Adversarially Robust Neural Networks

Vikash Sehwag, Shiqi Wang, Prateek Mittal, Suman Jana

arXiv:2002.10509v3 »Full PDF »

NeurIPS 2020

In safety-critical but computationally resource-constrained applications, deep learning faces two key challenges: lack of robustness against adversarial attacks and large neural network size (often millions of parameters). While the research community has extensively explored the use of robust training and network pruning independently to address one of these challenges, only a few recent works have studied them jointly. However, these works inherit a heuristic pruning strategy that was developed for benign training, which performs poorly when integrated with robust training techniques, including adversarial training and verifiable robust training. To overcome this challenge, we propose to make pruning techniques aware of the robust training objective and let the training objective guide the search for which connections to prune. We realize this insight by formulating the pruning objective as an empirical risk minimization problem which is solved efficiently using SGD. We demonstrate that our approach, titled HYDRA, achieves compressed networks with state-of-the-art benign and robust accuracy, simultaneously. We demonstrate the success of our approach across CIFAR-10, SVHN, and ImageNet dataset with four robust training techniques: iterative adversarial training, randomized smoothing, MixTrain, and CROWN-IBP. We also demonstrate the existence of highly robust sub-networks within non-robust networks. Our code and compressed networks are publicly available at \url{https://github.com/inspire-group/compactness-robustness}.Abstract

SORRY-Bench: Systematically Evaluating Large Language Model Safety Refusal Behaviors

Tinghao Xie, Xiangyu Qi, Yi Zeng, Yangsibo Huang, Udari Madhushani Sehwag, Kaixuan Huang, Luxi He, Boyi Wei, Dacheng Li, Ying Sheng, Ruoxi Jia, Bo Li, Kai Li, Danqi Chen, Peter Henderson, Prateek Mittal

arXiv:2406.14598v1 »Full PDF »
Evaluating aligned large language models' (LLMs) ability to recognize and reject unsafe user requests is crucial for safe, policy-compliant deployments. Existing evaluation efforts, however, face three limitations that we address with SORRY-Bench, our proposed benchmark. First, existing methods often use coarse-grained taxonomies of unsafe topics, and are over-representing some fine-grained topics. For example, among the ten existing datasets that we evaluated, tests for refusals of self-harm instructions are over 3x less represented than tests for fraudulent activities. SORRY-Bench improves on this by using a fine-grained taxonomy of 45 potentially unsafe topics, and 450 class-balanced unsafe instructions, compiled through human-in-the-loop methods. Second, linguistic characteristics and formatting of prompts are often overlooked, like different languages, dialects, and more -- which are only implicitly considered in many evaluations. We supplement SORRY-Bench with 20 diverse linguistic augmentations to systematically examine these effects. Third, existing evaluations rely on large LLMs (e.g., GPT-4) for evaluation, which can be computationally expensive. We investigate design choices for creating a fast, accurate automated safety evaluator. By collecting 7K+ human annotations and conducting a meta-evaluation of diverse LLM-as-a-judge designs, we show that fine-tuned 7B LLMs can achieve accuracy comparable to GPT-4 scale LLMs, with lower computational cost. Putting these together, we evaluate over 40 proprietary and open-source LLMs on SORRY-Bench, analyzing their distinctive refusal behaviors. We hope our effort provides a building block for systematic evaluations of LLMs' safety refusal capabilities, in a balanced, granular, and efficient manner.Abstract

Fair Evaluation of Federated Learning Algorithms for Automated Breast Density Classification: The Results of the 2022 ACR-NCI-NVIDIA Federated Learning Challenge

Kendall Schmidt, Benjamin Bearce, Ken Chang, Laura Coombs, Keyvan Farahani, Marawan Elbatele, Kaouther Mouhebe, Robert Marti, Ruipeng Zhang, Yao Zhang, Yanfeng Wang, Yaojun Hu, Haochao Ying, Yuyang Xu, Conrad Testagrose, Mutlu Demirer, Vikash Gupta, Ünal Akünal, Markus Bujotzek, Klaus H. Maier-Hein, Yi Qin, Xiaomeng Li, Jayashree Kalpathy-Cramer, Holger R. Roth

arXiv:2405.14900v1 »Full PDF »

16 pages, 9 figures

The correct interpretation of breast density is important in the assessment of breast cancer risk. AI has been shown capable of accurately predicting breast density, however, due to the differences in imaging characteristics across mammography systems, models built using data from one system do not generalize well to other systems. Though federated learning (FL) has emerged as a way to improve the generalizability of AI without the need to share data, the best way to preserve features from all training data during FL is an active area of research. To explore FL methodology, the breast density classification FL challenge was hosted in partnership with the American College of Radiology, Harvard Medical School's Mass General Brigham, University of Colorado, NVIDIA, and the National Institutes of Health National Cancer Institute. Challenge participants were able to submit docker containers capable of implementing FL on three simulated medical facilities, each containing a unique large mammography dataset. The breast density FL challenge ran from June 15 to September 5, 2022, attracting seven finalists from around the world. The winning FL submission reached a linear kappa score of 0.653 on the challenge test data and 0.413 on an external testing dataset, scoring comparably to a model trained on the same data in a central location.Abstract

MoDem-V2: Visuo-Motor World Models for Real-World Robot Manipulation

Patrick Lancaster, Nicklas Hansen, Aravind Rajeswaran, Vikash Kumar

arXiv:2309.14236v2 »Full PDF »

10 pages, 8 figures

Robotic systems that aspire to operate in uninstrumented real-world environments must perceive the world directly via onboard sensing. Vision-based learning systems aim to eliminate the need for environment instrumentation by building an implicit understanding of the world based on raw pixels, but navigating the contact-rich high-dimensional search space from solely sparse visual reward signals significantly exacerbates the challenge of exploration. The applicability of such systems is thus typically restricted to simulated or heavily engineered environments since agent exploration in the real-world without the guidance of explicit state estimation and dense rewards can lead to unsafe behavior and safety faults that are catastrophic. In this study, we isolate the root causes behind these limitations to develop a system, called MoDem-V2, capable of learning contact-rich manipulation directly in the uninstrumented real world. Building on the latest algorithmic advancements in model-based reinforcement learning (MBRL), demo-bootstrapping, and effective exploration, MoDem-V2 can acquire contact-rich dexterous manipulation skills directly in the real world. We identify key ingredients for leveraging demonstrations in model learning while respecting real-world safety considerations -- exploration centering, agency handover, and actor-critic ensembles. We empirically demonstrate the contribution of these ingredients in four complex visuo-motor manipulation problems in both simulation and the real world. To the best of our knowledge, our work presents the first successful system for demonstration-augmented visual MBRL trained directly in the real world. Visit https://sites.google.com/view/modem-v2 for videos and more details.Abstract

RAISE -- Radiology AI Safety, an End-to-end lifecycle approach

M. Jorge Cardoso, Julia Moosbauer, Tessa S. Cook, B. Selnur Erdal, Brad Genereaux, Vikash Gupta, Bennett A. Landman, Tiarna Lee, Parashkev Nachev, Elanchezhian Somasundaram, Ronald M. Summers, Khaled Younis, Sebastien Ourselin, Franz MJ Pfister

arXiv:2311.14570v1 »Full PDF »

14 pages, 3 figures

The integration of AI into radiology introduces opportunities for improved clinical care provision and efficiency but it demands a meticulous approach to mitigate potential risks as with any other new technology. Beginning with rigorous pre-deployment evaluation and validation, the focus should be on ensuring models meet the highest standards of safety, effectiveness and efficacy for their intended applications. Input and output guardrails implemented during production usage act as an additional layer of protection, identifying and addressing individual failures as they occur. Continuous post-deployment monitoring allows for tracking population-level performance (data drift), fairness, and value delivery over time. Scheduling reviews of post-deployment model performance and educating radiologists about new algorithmic-driven findings is critical for AI to be effective in clinical practice. Recognizing that no single AI solution can provide absolute assurance even when limited to its intended use, the synergistic application of quality assurance at multiple levels - regulatory, clinical, technical, and ethical - is emphasized. Collaborative efforts between stakeholders spanning healthcare systems, industry, academia, and government are imperative to address the multifaceted challenges involved. Trust in AI is an earned privilege, contingent on a broad set of goals, among them transparently demonstrating that the AI adheres to the same rigorous safety, effectiveness and efficacy standards as other established medical technologies. By doing so, developers can instil confidence among providers and patients alike, enabling the responsible scaling of AI and the realization of its potential benefits. The roadmap presented herein aims to expedite the achievement of deployable, reliable, and safe AI in radiology.Abstract

Integration and Implementation Strategies for AI Algorithm Deployment with Smart Routing Rules and Workflow Management

Barbaros Selnur Erdal, Vikash Gupta, Mutlu Demirer, Kim H. Fair, Richard D. White, Jeff Blair, Barbara Deichert, Laurie Lafleur, Ming Melvin Qin, David Bericat, Brad Genereaux

arXiv:2311.10840v2 »Full PDF »

13 pages, 6 figures

This paper reviews the challenges hindering the widespread adoption of artificial intelligence (AI) solutions in the healthcare industry, focusing on computer vision applications for medical imaging, and how interoperability and enterprise-grade scalability can be used to address these challenges. The complex nature of healthcare workflows, intricacies in managing large and secure medical imaging data, and the absence of standardized frameworks for AI development pose significant barriers and require a new paradigm to address them. The role of interoperability is examined in this paper as a crucial factor in connecting disparate applications within healthcare workflows. Standards such as DICOM, Health Level 7 (HL7), and Integrating the Healthcare Enterprise (IHE) are highlighted as foundational for common imaging workflows. A specific focus is placed on the role of DICOM gateways, with Smart Routing Rules and Workflow Management leading transformational efforts in this area. To drive enterprise scalability, new tools are needed. Project MONAI, established in 2019, is introduced as an initiative aiming to redefine the development of medical AI applications. The MONAI Deploy App SDK, a component of Project MONAI, is identified as a key tool in simplifying the packaging and deployment process, enabling repeatable, scalable, and standardized deployment patterns for AI applications. The abstract underscores the potential impact of successful AI adoption in healthcare, offering physicians both life-saving and time-saving insights and driving efficiencies in radiology department workflows. The collaborative efforts between academia and industry, are emphasized as essential for advancing the adoption of healthcare AI solutions.Abstract

RoboAgent: Generalization and Efficiency in Robot Manipulation via Semantic Augmentations and Action Chunking

Homanga Bharadhwaj, Jay Vakil, Mohit Sharma, Abhinav Gupta, Shubham Tulsiani, Vikash Kumar

arXiv:2309.01918v1 »Full PDF »
The grand aim of having a single robot that can manipulate arbitrary objects in diverse settings is at odds with the paucity of robotics datasets. Acquiring and growing such datasets is strenuous due to manual efforts, operational costs, and safety challenges. A path toward such an universal agent would require a structured framework capable of wide generalization but trained within a reasonable data budget. In this paper, we develop an efficient system (RoboAgent) for training universal agents capable of multi-task manipulation skills using (a) semantic augmentations that can rapidly multiply existing datasets and (b) action representations that can extract performant policies with small yet diverse multi-modal datasets without overfitting. In addition, reliable task conditioning and an expressive policy architecture enable our agent to exhibit a diverse repertoire of skills in novel situations specified using language commands. Using merely 7500 demonstrations, we are able to train a single agent capable of 12 unique skills, and demonstrate its generalization over 38 tasks spread across common daily activities in diverse kitchen scenes. On average, RoboAgent outperforms prior methods by over 40% in unseen situations while being more sample efficient and being amenable to capability improvements and extensions through fine-tuning. Videos at https://robopen.github.io/Abstract