Processing math: 100%

fairXiv Pronounced fair • kive

16737 latest Fairness/Ethics + ML/AI papers

An Adversarial Perspective on Machine Unlearning for AI Safety

Jakub Łucki, Boyi Wei, Yangsibo Huang, Peter Henderson, Florian Tramèr, Javier Rando

arXiv:2409.18025v3 »Full PDF »

Spotlight paper at Neurips 2024 SoLaR workshop

Large language models are finetuned to refuse questions about hazardous knowledge, but these protections can often be bypassed. Unlearning methods aim at completely removing hazardous capabilities from models and make them inaccessible to adversaries. This work challenges the fundamental differences between unlearning and traditional safety post-training from an adversarial perspective. We demonstrate that existing jailbreak methods, previously reported as ineffective against unlearning, can be successful when applied carefully. Furthermore, we develop a variety of adaptive methods that recover most supposedly unlearned capabilities. For instance, we show that finetuning on 10 unrelated examples or removing specific directions in the activation space can recover most hazardous capabilities for models edited with RMU, a state-of-the-art unlearning method. Our findings challenge the robustness of current unlearning approaches and question their advantages over safety training.Abstract

Assessing the Brittleness of Safety Alignment via Pruning and Low-Rank Modifications

Boyi Wei, Kaixuan Huang, Yangsibo Huang, Tinghao Xie, Xiangyu Qi, Mengzhou Xia, Prateek Mittal, Mengdi Wang, Peter Henderson

arXiv:2402.05162v4 »Full PDF »

22 pages, 9 figures. Project page is available at https://boyiwei.com/alignment-attribution/

Large language models (LLMs) show inherent brittleness in their safety mechanisms, as evidenced by their susceptibility to jailbreaking and even non-malicious fine-tuning. This study explores this brittleness of safety alignment by leveraging pruning and low-rank modifications. We develop methods to identify critical regions that are vital for safety guardrails, and that are disentangled from utility-relevant regions at both the neuron and rank levels. Surprisingly, the isolated regions we find are sparse, comprising about 3% at the parameter level and 2.5% at the rank level. Removing these regions compromises safety without significantly impacting utility, corroborating the inherent brittleness of the model's safety mechanisms. Moreover, we show that LLMs remain vulnerable to low-cost fine-tuning attacks even when modifications to the safety-critical regions are restricted. These findings underscore the urgent need for more robust safety strategies in LLMs.Abstract

The Responsible Foundation Model Development Cheatsheet: A Review of Tools & Resources

Shayne Longpre, Stella Biderman, Alon Albalak, Hailey Schoelkopf, Daniel McDuff, Sayash Kapoor, Kevin Klyman, Kyle Lo, Gabriel Ilharco, Nay San, Maribeth Rauh, Aviya Skowron, Bertie Vidgen, Laura Weidinger, Arvind Narayanan, Victor Sanh, David Adelani, Percy Liang, Rishi Bommasani, Peter Henderson, Sasha Luccioni, Yacine Jernite, Luca Soldaini

arXiv:2406.16746v3 »Full PDF »
Foundation model development attracts a rapidly expanding body of contributors, scientists, and applications. To help shape responsible development practices, we introduce the Foundation Model Development Cheatsheet: a growing collection of 250+ tools and resources spanning text, vision, and speech modalities. We draw on a large body of prior work to survey resources (e.g. software, documentation, frameworks, guides, and practical tools) that support informed data selection, processing, and understanding, precise and limitation-aware artifact documentation, efficient model training, advance awareness of the environmental impact from training, careful model evaluation of capabilities, risks, and claims, as well as responsible model release, licensing and deployment practices. We hope this curated collection of resources helps guide more responsible development. The process of curating this list, enabled us to review the AI development ecosystem, revealing what tools are critically missing, misused, or over-used in existing practices. We find that (i) tools for data sourcing, model evaluation, and monitoring are critically under-serving ethical and real-world needs, (ii) evaluations for model safety, capabilities, and environmental impact all lack reproducibility and transparency, (iii) text and particularly English-centric analyses continue to dominate over multilingual and multi-modal analyses, and (iv) evaluation of systems, rather than just models, is needed so that capabilities and impact are assessed in context.Abstract

What is in Your Safe Data? Identifying Benign Data that Breaks Safety

Luxi He, Mengzhou Xia, Peter Henderson

arXiv:2404.01099v2 »Full PDF »
Current Large Language Models (LLMs), even those tuned for safety and alignment, are susceptible to jailbreaking. Some have found that just further fine-tuning an aligned model with benign data (i.e., data without harmful content) surprisingly leads to substantial degradation in safety. We delve into the data-centric aspects of why benign fine-tuning inadvertently contributes to jailbreaking. First, we represent fine-tuning data through two lenses: representation and gradient spaces. Additionally, we propose a bi-directional anchoring method that, during the selection process, prioritizes data points that are close to harmful examples and far from benign ones. Our approach effectively identifies subsets of benign data that are more likely to degrade the model's safety after fine-tuning. Training on just 100 of these seemingly benign datapoints surprisingly leads to the fine-tuned model affirmatively responding to >70% of tested harmful requests, compared to <20% after fine-tuning on randomly selected data. We also observe that the selected data frequently appear as lists, bullet points, or math questions, indicating a systematic pattern in fine-tuning data that contributes to jailbreaking.Abstract

SORRY-Bench: Systematically Evaluating Large Language Model Safety Refusal Behaviors

Tinghao Xie, Xiangyu Qi, Yi Zeng, Yangsibo Huang, Udari Madhushani Sehwag, Kaixuan Huang, Luxi He, Boyi Wei, Dacheng Li, Ying Sheng, Ruoxi Jia, Bo Li, Kai Li, Danqi Chen, Peter Henderson, Prateek Mittal

arXiv:2406.14598v1 »Full PDF »
Evaluating aligned large language models' (LLMs) ability to recognize and reject unsafe user requests is crucial for safe, policy-compliant deployments. Existing evaluation efforts, however, face three limitations that we address with SORRY-Bench, our proposed benchmark. First, existing methods often use coarse-grained taxonomies of unsafe topics, and are over-representing some fine-grained topics. For example, among the ten existing datasets that we evaluated, tests for refusals of self-harm instructions are over 3x less represented than tests for fraudulent activities. SORRY-Bench improves on this by using a fine-grained taxonomy of 45 potentially unsafe topics, and 450 class-balanced unsafe instructions, compiled through human-in-the-loop methods. Second, linguistic characteristics and formatting of prompts are often overlooked, like different languages, dialects, and more -- which are only implicitly considered in many evaluations. We supplement SORRY-Bench with 20 diverse linguistic augmentations to systematically examine these effects. Third, existing evaluations rely on large LLMs (e.g., GPT-4) for evaluation, which can be computationally expensive. We investigate design choices for creating a fast, accurate automated safety evaluator. By collecting 7K+ human annotations and conducting a meta-evaluation of diverse LLM-as-a-judge designs, we show that fine-tuned 7B LLMs can achieve accuracy comparable to GPT-4 scale LLMs, with lower computational cost. Putting these together, we evaluate over 40 proprietary and open-source LLMs on SORRY-Bench, analyzing their distinctive refusal behaviors. We hope our effort provides a building block for systematic evaluations of LLMs' safety refusal capabilities, in a balanced, granular, and efficient manner.Abstract

Safety Alignment Should Be Made More Than Just a Few Tokens Deep

Xiangyu Qi, Ashwinee Panda, Kaifeng Lyu, Xiao Ma, Subhrajit Roy, Ahmad Beirami, Prateek Mittal, Peter Henderson

arXiv:2406.05946v1 »Full PDF »
The safety alignment of current Large Language Models (LLMs) is vulnerable. Relatively simple attacks, or even benign fine-tuning, can jailbreak aligned models. We argue that many of these vulnerabilities are related to a shared underlying issue: safety alignment can take shortcuts, wherein the alignment adapts a model's generative distribution primarily over only its very first few output tokens. We refer to this issue as shallow safety alignment. In this paper, we present case studies to explain why shallow safety alignment can exist and provide evidence that current aligned LLMs are subject to this issue. We also show how these findings help explain multiple recently discovered vulnerabilities in LLMs, including the susceptibility to adversarial suffix attacks, prefilling attacks, decoding parameter attacks, and fine-tuning attacks. Importantly, we discuss how this consolidated notion of shallow safety alignment sheds light on promising research directions for mitigating these vulnerabilities. For instance, we show that deepening the safety alignment beyond just the first few tokens can often meaningfully improve robustness against some common exploits. Finally, we design a regularized finetuning objective that makes the safety alignment more persistent against fine-tuning attacks by constraining updates on initial tokens. Overall, we advocate that future safety alignment should be made more than just a few tokens deep.Abstract

AI Risk Management Should Incorporate Both Safety and Security

Xiangyu Qi, Yangsibo Huang, Yi Zeng, Edoardo Debenedetti, Jonas Geiping, Luxi He, Kaixuan Huang, Udari Madhushani, Vikash Sehwag, Weijia Shi, Boyi Wei, Tinghao Xie, Danqi Chen, Pin-Yu Chen, Jeffrey Ding, Ruoxi Jia, Jiaqi Ma, Arvind Narayanan, Weijie J Su, Mengdi Wang, Chaowei Xiao, Bo Li, Dawn Song, Peter Henderson, Prateek Mittal

arXiv:2405.19524v1 »Full PDF »
The exposure of security vulnerabilities in safety-aligned language models, e.g., susceptibility to adversarial attacks, has shed light on the intricate interplay between AI safety and AI security. Although the two disciplines now come together under the overarching goal of AI risk management, they have historically evolved separately, giving rise to differing perspectives. Therefore, in this paper, we advocate that stakeholders in AI risk management should be aware of the nuances, synergies, and interplay between safety and security, and unambiguously take into account the perspectives of both disciplines in order to devise mostly effective and holistic risk mitigation approaches. Unfortunately, this vision is often obfuscated, as the definitions of the basic concepts of "safety" and "security" themselves are often inconsistent and lack consensus across communities. With AI risk management being increasingly cross-disciplinary, this issue is particularly salient. In light of this conceptual challenge, we introduce a unified reference framework to clarify the differences and interplay between AI safety and AI security, aiming to facilitate a shared understanding and effective collaboration across communities.Abstract

A Safe Harbor for AI Evaluation and Red Teaming

Shayne Longpre, Sayash Kapoor, Kevin Klyman, Ashwin Ramaswami, Rishi Bommasani, Borhane Blili-Hamelin, Yangsibo Huang, Aviya Skowron, Zheng-Xin Yong, Suhas Kotha, Yi Zeng, Weiyan Shi, Xianjun Yang, Reid Southen, Alexander Robey, Patrick Chao, Diyi Yang, Ruoxi Jia, Daniel Kang, Sandy Pentland, Arvind Narayanan, Percy Liang, Peter Henderson

arXiv:2403.04893v1 »Full PDF »
Independent evaluation and red teaming are critical for identifying the risks posed by generative AI systems. However, the terms of service and enforcement strategies used by prominent AI companies to deter model misuse have disincentives on good faith safety evaluations. This causes some researchers to fear that conducting such research or releasing their findings will result in account suspensions or legal reprisal. Although some companies offer researcher access programs, they are an inadequate substitute for independent research access, as they have limited community representation, receive inadequate funding, and lack independence from corporate incentives. We propose that major AI developers commit to providing a legal and technical safe harbor, indemnifying public interest safety research and protecting it from the threat of account suspensions or legal reprisal. These proposals emerged from our collective experience conducting safety, privacy, and trustworthiness research on generative AI systems, where norms and incentives could be better aligned with public interests, without exacerbating model misuse. We believe these commitments are a necessary step towards more inclusive and unimpeded community efforts to tackle the risks of generative AI.Abstract

Fine-tuning Aligned Language Models Compromises Safety, Even When Users Do Not Intend To!

Xiangyu Qi, Yi Zeng, Tinghao Xie, Pin-Yu Chen, Ruoxi Jia, Prateek Mittal, Peter Henderson

arXiv:2310.03693v1 »Full PDF »
Optimizing large language models (LLMs) for downstream use cases often involves the customization of pre-trained LLMs through further fine-tuning. Meta's open release of Llama models and OpenAI's APIs for fine-tuning GPT-3.5 Turbo on custom datasets also encourage this practice. But, what are the safety costs associated with such custom fine-tuning? We note that while existing safety alignment infrastructures can restrict harmful behaviors of LLMs at inference time, they do not cover safety risks when fine-tuning privileges are extended to end-users. Our red teaming studies find that the safety alignment of LLMs can be compromised by fine-tuning with only a few adversarially designed training examples. For instance, we jailbreak GPT-3.5 Turbo's safety guardrails by fine-tuning it on only 10 such examples at a cost of less than $0.20 via OpenAI's APIs, making the model responsive to nearly any harmful instructions. Disconcertingly, our research also reveals that, even without malicious intent, simply fine-tuning with benign and commonly used datasets can also inadvertently degrade the safety alignment of LLMs, though to a lesser extent. These findings suggest that fine-tuning aligned LLMs introduces new safety risks that current safety infrastructures fall short of addressing -- even if a model's initial safety alignment is impeccable, it is not necessarily to be maintained after custom fine-tuning. We outline and critically analyze potential mitigations and advocate for further research efforts toward reinforcing safety protocols for the custom fine-tuning of aligned LLMs.Abstract

Holistic Evaluation of Language Models

Percy Liang, Rishi Bommasani, Tony Lee, Dimitris Tsipras, Dilara Soylu, Michihiro Yasunaga, Yian Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Kumar, Benjamin Newman, Binhang Yuan, Bobby Yan, Ce Zhang, Christian Cosgrove, Christopher D. Manning, Christopher Ré, Diana Acosta-Navas, Drew A. Hudson, Eric Zelikman, Esin Durmus, Faisal Ladhak, Frieda Rong, Hongyu Ren, Huaxiu Yao, Jue Wang, Keshav Santhanam, Laurel Orr, Lucia Zheng, Mert Yuksekgonul, Mirac Suzgun, Nathan Kim, Neel Guha, Niladri Chatterji, Omar Khattab, Peter Henderson, Qian Huang, Ryan Chi, Sang Michael Xie, Shibani Santurkar, Surya Ganguli, Tatsunori Hashimoto, Thomas Icard, Tianyi Zhang, Vishrav Chaudhary, William Wang, Xuechen Li, Yifan Mai, Yuhui Zhang, Yuta Koreeda

arXiv:2211.09110v2 »Full PDF »

Authored by the Center for Research on Foundation Models (CRFM) at the Stanford Institute for Huma...

Language models (LMs) are becoming the foundation for almost all major language technologies, but their capabilities, limitations, and risks are not well understood. We present Holistic Evaluation of Language Models (HELM) to improve the transparency of language models. First, we taxonomize the vast space of potential scenarios (i.e. use cases) and metrics (i.e. desiderata) that are of interest for LMs. Then we select a broad subset based on coverage and feasibility, noting what's missing or underrepresented (e.g. question answering for neglected English dialects, metrics for trustworthiness). Second, we adopt a multi-metric approach: We measure 7 metrics (accuracy, calibration, robustness, fairness, bias, toxicity, and efficiency) for each of 16 core scenarios when possible (87.5% of the time). This ensures metrics beyond accuracy don't fall to the wayside, and that trade-offs are clearly exposed. We also perform 7 targeted evaluations, based on 26 targeted scenarios, to analyze specific aspects (e.g. reasoning, disinformation). Third, we conduct a large-scale evaluation of 30 prominent language models (spanning open, limited-access, and closed models) on all 42 scenarios, 21 of which were not previously used in mainstream LM evaluation. Prior to HELM, models on average were evaluated on just 17.9% of the core HELM scenarios, with some prominent models not sharing a single scenario in common. We improve this to 96.0%: now all 30 models have been densely benchmarked on the same core scenarios and metrics under standardized conditions. Our evaluation surfaces 25 top-level findings. For full transparency, we release all raw model prompts and completions publicly for further analysis, as well as a general modular toolkit. We intend for HELM to be a living benchmark for the community, continuously updated with new scenarios, metrics, and models.Abstract