Processing math: 100%

fairXiv Pronounced fair • kive

16737 latest Fairness/Ethics + ML/AI papers

PathSeeker: Exploring LLM Security Vulnerabilities with a Reinforcement Learning-Based Jailbreak Approach

Zhihao Lin, Wei Ma, Mingyi Zhou, Yanjie Zhao, Haoyu Wang, Yang Liu, Jun Wang, Li Li

arXiv:2409.14177v2 »Full PDF »

update the abstract and cite a new related work

In recent years, Large Language Models (LLMs) have gained widespread use, raising concerns about their security. Traditional jailbreak attacks, which often rely on the model internal information or have limitations when exploring the unsafe behavior of the victim model, limiting their reducing their general applicability. In this paper, we introduce PathSeeker, a novel black-box jailbreak method, which is inspired by the game of rats escaping a maze. We think that each LLM has its unique "security maze", and attackers attempt to find the exit learning from the received feedback and their accumulated experience to compromise the target LLM's security defences. Our approach leverages multi-agent reinforcement learning, where smaller models collaborate to guide the main LLM in performing mutation operations to achieve the attack objectives. By progressively modifying inputs based on the model's feedback, our system induces richer, harmful responses. During our manual attempts to perform jailbreak attacks, we found that the vocabulary of the response of the target model gradually became richer and eventually produced harmful responses. Based on the observation, we also introduce a reward mechanism that exploits the expansion of vocabulary richness in LLM responses to weaken security constraints. Our method outperforms five state-of-the-art attack techniques when tested across 13 commercial and open-source LLMs, achieving high attack success rates, especially in strongly aligned commercial models like GPT-4o-mini, Claude-3.5, and GLM-4-air with strong safety alignment. This study aims to improve the understanding of LLM security vulnerabilities and we hope that this sturdy can contribute to the development of more robust defenses.Abstract

GuardAgent: Safeguard LLM Agents by a Guard Agent via Knowledge-Enabled Reasoning

Zhen Xiang, Linzhi Zheng, Yanjie Li, Junyuan Hong, Qinbin Li, Han Xie, Jiawei Zhang, Zidi Xiong, Chulin Xie, Carl Yang, Dawn Song, Bo Li

arXiv:2406.09187v1 »Full PDF »
The rapid advancement of large language models (LLMs) has catalyzed the deployment of LLM-powered agents across numerous applications, raising new concerns regarding their safety and trustworthiness. Existing methods for enhancing the safety of LLMs are not directly transferable to LLM-powered agents due to their diverse objectives and output modalities. In this paper, we propose GuardAgent, the first LLM agent as a guardrail to other LLM agents. Specifically, GuardAgent oversees a target LLM agent by checking whether its inputs/outputs satisfy a set of given guard requests defined by the users. GuardAgent comprises two steps: 1) creating a task plan by analyzing the provided guard requests, and 2) generating guardrail code based on the task plan and executing the code by calling APIs or using external engines. In both steps, an LLM is utilized as the core reasoning component, supplemented by in-context demonstrations retrieved from a memory module. Such knowledge-enabled reasoning allows GuardAgent to understand various textual guard requests and accurately "translate" them into executable code that provides reliable guardrails. Furthermore, GuardAgent is equipped with an extendable toolbox containing functions and APIs and requires no additional LLM training, which underscores its generalization capabilities and low operational overhead. Additionally, we propose two novel benchmarks: an EICU-AC benchmark for assessing privacy-related access control for healthcare agents and a Mind2Web-SC benchmark for safety evaluation for web agents. We show the effectiveness of GuardAgent on these two benchmarks with 98.7% and 90.0% accuracy in moderating invalid inputs and outputs for the two types of agents, respectively. We also show that GuardAgent is able to define novel functions in adaption to emergent LLM agents and guard requests, which underscores its strong generalization capabilities.Abstract

A Survey of Robustness and Safety of 2D and 3D Deep Learning Models Against Adversarial Attacks

Yanjie Li, Bin Xie, Songtao Guo, Yuanyuan Yang, Bin Xiao

arXiv:2310.00633v1 »Full PDF »

Submitted to CSUR

Benefiting from the rapid development of deep learning, 2D and 3D computer vision applications are deployed in many safe-critical systems, such as autopilot and identity authentication. However, deep learning models are not trustworthy enough because of their limited robustness against adversarial attacks. The physically realizable adversarial attacks further pose fatal threats to the application and human safety. Lots of papers have emerged to investigate the robustness and safety of deep learning models against adversarial attacks. To lead to trustworthy AI, we first construct a general threat model from different perspectives and then comprehensively review the latest progress of both 2D and 3D adversarial attacks. We extend the concept of adversarial examples beyond imperceptive perturbations and collate over 170 papers to give an overview of deep learning model robustness against various adversarial attacks. To the best of our knowledge, we are the first to systematically investigate adversarial attacks for 3D models, a flourishing field applied to many real-world applications. In addition, we examine physical adversarial attacks that lead to safety violations. Last but not least, we summarize present popular topics, give insights on challenges, and shed light on future research on trustworthy AI.Abstract

Who Should Review Your Proposal? Interdisciplinary Topic Path Detection for Research Proposals

Meng Xiao, Ziyue Qiao, Yanjie Fu, Hao Dong, Yi Du, Pengyang Wang, Dong Li, Yuanchun Zhou

arXiv:2203.10922v1 »Full PDF »

11 pages with 2 appendix, 13 figures

The peer merit review of research proposals has been the major mechanism to decide grant awards. Nowadays, research proposals have become increasingly interdisciplinary. It has been a longstanding challenge to assign proposals to appropriate reviewers. One of the critical steps in reviewer assignment is to generate accurate interdisciplinary topic labels for proposals. Existing systems mainly collect topic labels manually reported by discipline investigators. However, such human-reported labels can be non-accurate and incomplete. What role can AI play in developing a fair and precise proposal review system? In this evidential study, we collaborate with the National Science Foundation of China to address the task of automated interdisciplinary topic path detection. For this purpose, we develop a deep Hierarchical Interdisciplinary Research Proposal Classification Network (HIRPCN). We first propose a hierarchical transformer to extract the textual semantic information of proposals. We then design an interdisciplinary graph and leverage GNNs to learn representations of each discipline in order to extract interdisciplinary knowledge. After extracting the semantic and interdisciplinary knowledge, we design a level-wise prediction component to fuse the two types of knowledge representations and detect interdisciplinary topic paths for each proposal. We conduct extensive experiments and expert evaluations on three real-world datasets to demonstrate the effectiveness of our proposed model.Abstract

Hidden Backdoor Attack against Semantic Segmentation Models

Yiming Li, Yanjie Li, Yalei Lv, Yong Jiang, Shu-Tao Xia

arXiv:2103.04038v3 »Full PDF »

This is a 6-pages short version of our ongoing work. It is accepted by the non-archival ICLR works...

Deep neural networks (DNNs) are vulnerable to the \emph{backdoor attack}, which intends to embed hidden backdoors in DNNs by poisoning training data. The attacked model behaves normally on benign samples, whereas its prediction will be changed to a particular target label if hidden backdoors are activated. So far, backdoor research has mostly been conducted towards classification tasks. In this paper, we reveal that this threat could also happen in semantic segmentation, which may further endanger many mission-critical applications (e.g., autonomous driving). Except for extending the existing attack paradigm to maliciously manipulate the segmentation models from the image-level, we propose a novel attack paradigm, the \emph{fine-grained attack}, where we treat the target label (i.e., annotation) from the object-level instead of the image-level to achieve more sophisticated manipulation. In the annotation of poisoned samples generated by the fine-grained attack, only pixels of specific objects will be labeled with the attacker-specified target class while others are still with their ground-truth ones. Experiments show that the proposed methods can successfully attack semantic segmentation models by poisoning only a small proportion of training data. Our method not only provides a new perspective for designing novel attacks but also serves as a strong baseline for improving the robustness of semantic segmentation methods.Abstract

BehaviorGPT: Smart Agent Simulation for Autonomous Driving with Next-Patch Prediction

Zikang Zhou, Haibo Hu, Xinhong Chen, Jianping Wang, Nan Guan, Kui Wu, Yung-Hui Li, Yu-Kai Huang, Chun Jason Xue

arXiv:2405.17372v3 »Full PDF »

NeurIPS 2024

Simulating realistic behaviors of traffic agents is pivotal for efficiently validating the safety of autonomous driving systems. Existing data-driven simulators primarily use an encoder-decoder architecture to encode the historical trajectories before decoding the future. However, the heterogeneity between encoders and decoders complicates the models, and the manual separation of historical and future trajectories leads to low data utilization. Given these limitations, we propose BehaviorGPT, a homogeneous and fully autoregressive Transformer designed to simulate the sequential behavior of multiple agents. Crucially, our approach discards the traditional separation between "history" and "future" by modeling each time step as the "current" one for motion generation, leading to a simpler, more parameter- and data-efficient agent simulator. We further introduce the Next-Patch Prediction Paradigm (NP3) to mitigate the negative effects of autoregressive modeling, in which models are trained to reason at the patch level of trajectories and capture long-range spatial-temporal interactions. Despite having merely 3M model parameters, BehaviorGPT won first place in the 2024 Waymo Open Sim Agents Challenge with a realism score of 0.7473 and a minADE score of 1.4147, demonstrating its exceptional performance in traffic agent simulation.Abstract

LongSafetyBench: Long-Context LLMs Struggle with Safety Issues

Mianqiu Huang, Xiaoran Liu, Shaojun Zhou, Mozhi Zhang, Chenkun Tan, Pengyu Wang, Qipeng Guo, Zhe Xu, Linyang Li, Zhikai Lei, Linlin Li, Qun Liu, Yaqian Zhou, Xipeng Qiu, Xuanjing Huang

arXiv:2411.06899v1 »Full PDF »
With the development of large language models (LLMs), the sequence length of these models continues to increase, drawing significant attention to long-context language models. However, the evaluation of these models has been primarily limited to their capabilities, with a lack of research focusing on their safety. Existing work, such as ManyShotJailbreak, has to some extent demonstrated that long-context language models can exhibit safety concerns. However, the methods used are limited and lack comprehensiveness. In response, we introduce \textbf{LongSafetyBench}, the first benchmark designed to objectively and comprehensively evaluate the safety of long-context models. LongSafetyBench consists of 10 task categories, with an average length of 41,889 words. After testing eight long-context language models on LongSafetyBench, we found that existing models generally exhibit insufficient safety capabilities. The proportion of safe responses from most mainstream long-context LLMs is below 50\%. Moreover, models' safety performance in long-context scenarios does not always align with that in short-context scenarios. Further investigation revealed that long-context models tend to overlook harmful content within lengthy texts. We also proposed a simple yet effective solution, allowing open-source models to achieve performance comparable to that of top-tier closed-source models. We believe that LongSafetyBench can serve as a valuable benchmark for evaluating the safety capabilities of long-context language models. We hope that our work will encourage the broader community to pay attention to the safety of long-context models and contribute to the development of solutions to improve the safety of long-context LLMs.Abstract

WassFFed: Wasserstein Fair Federated Learning

Zhongxuan Han, Li Zhang, Chaochao Chen, Xiaolin Zheng, Fei Zheng, Yuyuan Li, Jianwei Yin

arXiv:2411.06881v1 »Full PDF »

Submitted to TKDE

Federated Learning (FL) employs a training approach to address scenarios where users' data cannot be shared across clients. Achieving fairness in FL is imperative since training data in FL is inherently geographically distributed among diverse user groups. Existing research on fairness predominantly assumes access to the entire training data, making direct transfer to FL challenging. However, the limited existing research on fairness in FL does not effectively address two key challenges, i.e., (CH1) Current methods fail to deal with the inconsistency between fair optimization results obtained with surrogate functions and fair classification results. (CH2) Directly aggregating local fair models does not always yield a globally fair model due to non Identical and Independent data Distributions (non-IID) among clients. To address these challenges, we propose a Wasserstein Fair Federated Learning framework, namely WassFFed. To tackle CH1, we ensure that the outputs of local models, rather than the loss calculated with surrogate functions or classification results with a threshold, remain independent of various user groups. To resolve CH2, we employ a Wasserstein barycenter calculation of all local models' outputs for each user group, bringing local model outputs closer to the global output distribution to ensure consistency between the global model and local models. We conduct extensive experiments on three real-world datasets, demonstrating that WassFFed outperforms existing approaches in striking a balance between accuracy and fairness.Abstract

The Dark Side of AI Companionship: A Taxonomy of Harmful Algorithmic Behaviors in Human-AI Relationships

Renwen Zhang, Han Li, Han Meng, Jinyuan Zhan, Hongyuan Gan, Yi-Chieh Lee

arXiv:2410.20130v2 »Full PDF »
As conversational AI systems increasingly permeate the socio-emotional realms of human life, they bring both benefits and risks to individuals and society. Despite extensive research on detecting and categorizing harms in AI systems, less is known about the harms that arise from social interactions with AI chatbots. Through a mixed-methods analysis of 35,390 conversation excerpts shared on r/replika, an online community for users of the AI companion Replika, we identified six categories of harmful behaviors exhibited by the chatbot: relational transgression, verbal abuse and hate, self-inflicted harm, harassment and violence, mis/disinformation, and privacy violations. The AI contributes to these harms through four distinct roles: perpetrator, instigator, facilitator, and enabler. Our findings highlight the relational harms of AI chatbots and the danger of algorithmic compliance, enhancing the understanding of AI harms in socio-emotional interactions. We also provide suggestions for designing ethical and responsible AI systems that prioritize user safety and well-being.Abstract

Reinforcement Learning-based Receding Horizon Control using Adaptive Control Barrier Functions for Safety-Critical Systems

Ehsan Sabouni, H. M. Sabbir Ahmad, Vittorio Giammarino, Christos G. Cassandras, Ioannis Ch. Paschalidis, Wenchao Li

arXiv:2403.17338v2 »Full PDF »
Optimal control methods provide solutions to safety-critical problems but easily become intractable. Control Barrier Functions (CBFs) have emerged as a popular technique that facilitates their solution by provably guaranteeing safety, through their forward invariance property, at the expense of some performance loss. This approach involves defining a performance objective alongside CBF-based safety constraints that must always be enforced. Unfortunately, both performance and solution feasibility can be significantly impacted by two key factors: (i) the selection of the cost function and associated parameters, and (ii) the calibration of parameters within the CBF-based constraints, which capture the trade-off between performance and conservativeness. %as well as infeasibility. To address these challenges, we propose a Reinforcement Learning (RL)-based Receding Horizon Control (RHC) approach leveraging Model Predictive Control (MPC) with CBFs (MPC-CBF). In particular, we parameterize our controller and use bilevel optimization, where RL is used to learn the optimal parameters while MPC computes the optimal control input. We validate our method by applying it to the challenging automated merging control problem for Connected and Automated Vehicles (CAVs) at conflicting roadways. Results demonstrate improved performance and a significant reduction in the number of infeasible cases compared to traditional heuristic approaches used for tuning CBF-based controllers, showcasing the effectiveness of the proposed method.Abstract