Processing math: 100%

fairXiv Pronounced fair • kive

16737 latest Fairness/Ethics + ML/AI papers

Imagen 3

Imagen-Team-Google, :, Jason Baldridge, Jakob Bauer, Mukul Bhutani, Nicole Brichtova, Andrew Bunner, Kelvin Chan, Yichang Chen, Sander Dieleman, Yuqing Du, Zach Eaton-Rosen, Hongliang Fei, Nando de Freitas, Yilin Gao, Evgeny Gladchenko, Sergio Gómez Colmenarejo, Mandy Guo, Alex Haig, Will Hawkins, Hexiang Hu, Huilian Huang, Tobenna Peter Igwe, Christos Kaplanis, Siavash Khodadadeh, Yelin Kim, Ksenia Konyushkova, Karol Langner, Eric Lau, Shixin Luo, Soňa Mokrá, Henna Nandwani, Yasumasa Onoe, Aäron van den Oord, Zarana Parekh, Jordi Pont-Tuset, Hang Qi, Rui Qian, Deepak Ramachandran, Poorva Rane, Abdullah Rashwan, Ali Razavi, Robert Riachi, Hansa Srinivasan, Srivatsan Srinivasan, Robin Strudel, Benigno Uria, Oliver Wang, Su Wang, Austin Waters, Chris Wolff, Auriel Wright, Zhisheng Xiao, Hao Xiong, Keyang Xu, Marc van Zee, Junlin Zhang, Katie Zhang, Wenlei Zhou, Konrad Zolna, Ola Aboubakar, Canfer Akbulut, Oscar Akerlund, Isabela Albuquerque, Nina Anderson, Marco Andreetto, Lora Aroyo, Ben Bariach, David Barker, Sherry Ben, Dana Berman, Courtney Biles, Irina Blok, Pankil Botadra, Jenny Brennan, Karla Brown, John Buckley, Rudy Bunel, Elie Bursztein, Christina Butterfield, Ben Caine, Viral Carpenter, Norman Casagrande, Ming-Wei Chang, Solomon Chang, Shamik Chaudhuri, Tony Chen, John Choi, Dmitry Churbanau, Nathan Clement, Matan Cohen, Forrester Cole, Mikhail Dektiarev, Vincent Du, Praneet Dutta, Tom Eccles, Ndidi Elue, Ashley Feden, Shlomi Fruchter, Frankie Garcia, Roopal Garg, Weina Ge, Ahmed Ghazy, Bryant Gipson, Andrew Goodman, Dawid Górny, Sven Gowal, Khyatti Gupta, Yoni Halpern, Yena Han, Susan Hao, Jamie Hayes, Amir Hertz, Ed Hirst, Tingbo Hou, Heidi Howard, Mohamed Ibrahim, Dirichi Ike-Njoku, Joana Iljazi, Vlad Ionescu, William Isaac, Reena Jana, Gemma Jennings, Donovon Jenson, Xuhui Jia, Kerry Jones, Xiaoen Ju, Ivana Kajic, Christos Kaplanis, Burcu Karagol Ayan, Jacob Kelly, Suraj Kothawade, Christina Kouridi, Ira Ktena, Jolanda Kumakaw, Dana Kurniawan, Dmitry Lagun, Lily Lavitas, Jason Lee, Tao Li, Marco Liang, Maggie Li-Calis, Yuchi Liu, Javier Lopez Alberca, Peggy Lu, Kristian Lum, Yukun Ma, Chase Malik, John Mellor, Inbar Mosseri, Tom Murray, Aida Nematzadeh, Paul Nicholas, João Gabriel Oliveira, Guillermo Ortiz-Jimenez, Michela Paganini, Tom Le Paine, Roni Paiss, Alicia Parrish, Anne Peckham, Vikas Peswani, Igor Petrovski, Tobias Pfaff, Alex Pirozhenko, Ryan Poplin, Utsav Prabhu, Yuan Qi, Matthew Rahtz, Cyrus Rashtchian, Charvi Rastogi, Amit Raul, Ali Razavi, Sylvestre-Alvise Rebuffi, Susanna Ricco, Felix Riedel, Dirk Robinson, Pankaj Rohatgi, Bill Rosgen, Sarah Rumbley, Moonkyung Ryu, Anthony Salgado, Sahil Singla, Florian Schroff, Candice Schumann, Tanmay Shah, Brendan Shillingford, Kaushik Shivakumar, Dennis Shtatnov, Zach Singer, Evgeny Sluzhaev, Valerii Sokolov, Thibault Sottiaux, Florian Stimberg, Brad Stone, David Stutz, Yu-Chuan Su, Eric Tabellion, Shuai Tang, David Tao, Kurt Thomas, Gregory Thornton, Andeep Toor, Cristian Udrescu, Aayush Upadhyay, Cristina Vasconcelos, Alex Vasiloff, Andrey Voynov, Amanda Walker, Luyu Wang, Miaosen Wang, Simon Wang, Stanley Wang, Qifei Wang, Yuxiao Wang, Ágoston Weisz, Olivia Wiles, Chenxia Wu, Xingyu Federico Xu, Andrew Xue, Jianbo Yang, Luo Yu, Mete Yurtoglu, Ali Zand, Han Zhang, Jiageng Zhang, Catherine Zhao, Adilet Zhaxybay, Miao Zhou, Shengqi Zhu, Zhenkai Zhu, Dawn Bloxwich, Mahyar Bordbar, Luis C. Cobo, Eli Collins, Shengyang Dai, Tulsee Doshi, Anca Dragan, Douglas Eck, Demis Hassabis, Sissie Hsiao, Tom Hume, Koray Kavukcuoglu, Helen King, Jack Krawczyk, Yeqing Li, Kathy Meier-Hellstern, Andras Orban, Yury Pinsky, Amar Subramanya, Oriol Vinyals, Ting Yu, Yori Zwols

arXiv:2408.07009v1 »Full PDF »
We introduce Imagen 3, a latent diffusion model that generates high quality images from text prompts. We describe our quality and responsibility evaluations. Imagen 3 is preferred over other state-of-the-art (SOTA) models at the time of evaluation. In addition, we discuss issues around safety and representation, as well as methods we used to minimize the potential harm of our models.Abstract

The Equitable AI Research Roundtable (EARR): Towards Community-Based Decision Making in Responsible AI Development

Jamila Smith-Loud, Andrew Smart, Darlene Neal, Amber Ebinama, Eric Corbett, Paul Nicholas, Qazi Rashid, Anne Peckham, Sarah Murphy-Gray, Nicole Morris, Elisha Smith Arrillaga, Nicole-Marie Cotton, Emnet Almedom, Olivia Araiza, Eliza McCullough, Abbie Langston, Christopher Nellum

arXiv:2303.08177v1 »Full PDF »

14 pages, 1 figure

This paper reports on our initial evaluation of The Equitable AI Research Roundtable -- a coalition of experts in law, education, community engagement, social justice, and technology. EARR was created in collaboration among a large tech firm, nonprofits, NGO research institutions, and universities to provide critical research based perspectives and feedback on technology's emergent ethical and social harms. Through semi-structured workshops and discussions within the large tech firm, EARR has provided critical perspectives and feedback on how to conceptualize equity and vulnerability as they relate to AI technology. We outline three principles in practice of how EARR has operated thus far that are especially relevant to the concerns of the FAccT community: how EARR expands the scope of expertise in AI development, how it fosters opportunities for epistemic curiosity and responsibility, and that it creates a space for mutual learning. This paper serves as both an analysis and translation of lessons learned through this engagement approach, and the possibilities for future research.Abstract

SafetyAnalyst: Interpretable, transparent, and steerable LLM safety moderation

Jing-Jing Li, Valentina Pyatkin, Max Kleiman-Weiner, Liwei Jiang, Nouha Dziri, Anne G. E. Collins, Jana Schaich Borg, Maarten Sap, Yejin Choi, Sydney Levine

arXiv:2410.16665v1 »Full PDF »
The ideal LLM content moderation system would be both structurally interpretable (so its decisions can be explained to users) and steerable (to reflect a community's values or align to safety standards). However, current systems fall short on both of these dimensions. To address this gap, we present SafetyAnalyst, a novel LLM safety moderation framework. Given a prompt, SafetyAnalyst creates a structured "harm-benefit tree," which identifies 1) the actions that could be taken if a compliant response were provided, 2) the harmful and beneficial effects of those actions (along with their likelihood, severity, and immediacy), and 3) the stakeholders that would be impacted by those effects. It then aggregates this structured representation into a harmfulness score based on a parameterized set of safety preferences, which can be transparently aligned to particular values. Using extensive harm-benefit features generated by SOTA LLMs on 19k prompts, we fine-tuned an open-weight LM to specialize in generating harm-benefit trees through symbolic knowledge distillation. On a comprehensive set of prompt safety benchmarks, we show that our system (average F1=0.75) outperforms existing LLM safety moderation systems (average F1<0.72) on prompt harmfulness classification, while offering the additional advantages of interpretability and steerability.Abstract

Assessing Privacy Policies with AI: Ethical, Legal, and Technical Challenges

Irem Aydin, Hermann Diebel-Fischer, Vincent Freiberger, Julia Möller-Klapperich, Erik Buchmann, Michael Färber, Anne Lauber-Rönsberg, Birte Platow

arXiv:2410.08381v1 »Full PDF »

Published at AISyS 2024

The growing use of Machine Learning and Artificial Intelligence (AI), particularly Large Language Models (LLMs) like OpenAI's GPT series, leads to disruptive changes across organizations. At the same time, there is a growing concern about how organizations handle personal data. Thus, privacy policies are essential for transparency in data processing practices, enabling users to assess privacy risks. However, these policies are often long and complex. This might lead to user confusion and consent fatigue, where users accept data practices against their interests, and abusive or unfair practices might go unnoticed. LLMss can be used to assess privacy policies for users automatically. In this interdisciplinary work, we explore the challenges of this approach in three pillars, namely technical feasibility, ethical implications, and legal compatibility of using LLMs to assess privacy policies. Our findings aim to identify potential for future research, and to foster a discussion on the use of LLM technologies for enabling users to fulfil their important role as decision-makers in a constantly developing AI-driven digital economy.Abstract

SoK: Towards Security and Safety of Edge AI

Tatjana Wingarz, Anne Lauscher, Janick Edinger, Dominik Kaaser, Stefan Schulte, Mathias Fischer

arXiv:2410.05349v1 »Full PDF »
Advanced AI applications have become increasingly available to a broad audience, e.g., as centrally managed large language models (LLMs). Such centralization is both a risk and a performance bottleneck - Edge AI promises to be a solution to these problems. However, its decentralized approach raises additional challenges regarding security and safety. In this paper, we argue that both of these aspects are critical for Edge AI, and even more so, their integration. Concretely, we survey security and safety threats, summarize existing countermeasures, and collect open challenges as a call for more research in this area.Abstract

Learning Molecular Representation in a Cell

Gang Liu, Srijit Seal, John Arevalo, Zhenwen Liang, Anne E. Carpenter, Meng Jiang, Shantanu Singh

arXiv:2406.12056v3 »Full PDF »

20 pages, 5 tables, 7 figures

Predicting drug efficacy and safety in vivo requires information on biological responses (e.g., cell morphology and gene expression) to small molecule perturbations. However, current molecular representation learning methods do not provide a comprehensive view of cell states under these perturbations and struggle to remove noise, hindering model generalization. We introduce the Information Alignment (InfoAlign) approach to learn molecular representations through the information bottleneck method in cells. We integrate molecules and cellular response data as nodes into a context graph, connecting them with weighted edges based on chemical, biological, and computational criteria. For each molecule in a training batch, InfoAlign optimizes the encoder's latent representation with a minimality objective to discard redundant structural information. A sufficiency objective decodes the representation to align with different feature spaces from the molecule's neighborhood in the context graph. We demonstrate that the proposed sufficiency objective for alignment is tighter than existing encoder-based contrastive methods. Empirically, we validate representations from InfoAlign in two downstream applications: molecular property prediction against up to 27 baseline methods across four datasets, plus zero-shot molecule-morphology matching.Abstract

The Lou Dataset -- Exploring the Impact of Gender-Fair Language in German Text Classification

Andreas Waldis, Joel Birrer, Anne Lauscher, Iryna Gurevych

arXiv:2409.17929v1 »Full PDF »
Gender-fair language, an evolving German linguistic variation, fosters inclusion by addressing all genders or using neutral forms. Nevertheless, there is a significant lack of resources to assess the impact of this linguistic shift on classification using language models (LMs), which are probably not trained on such variations. To address this gap, we present Lou, the first dataset featuring high-quality reformulations for German text classification covering seven tasks, like stance detection and toxicity classification. Evaluating 16 mono- and multi-lingual LMs on Lou shows that gender-fair language substantially impacts predictions by flipping labels, reducing certainty, and altering attention patterns. However, existing evaluations remain valid, as LM rankings of original and reformulated instances do not significantly differ. While we offer initial insights on the effect on German text classification, the findings likely apply to other languages, as consistent patterns were observed in multi-lingual and English LMs.Abstract

15 Years of Algorithmic Fairness -- Scoping Review of Interdisciplinary Developments in the Field

Daphne Lenders, Anne Oloo

arXiv:2408.01448v1 »Full PDF »

12 pages

This paper presents a scoping review of algorithmic fairness research over the past fifteen years, utilising a dataset sourced from Web of Science, HEIN Online, FAccT and AIES proceedings. All articles come from the computer science and legal field and focus on AI algorithms with potential discriminatory effects on population groups. Each article is annotated based on their discussed technology, demographic focus, application domain and geographical context. Our analysis reveals a growing trend towards specificity in addressed domains, approaches, and demographics, though a substantial portion of contributions remains generic. Specialised discussions often concentrate on gender- or race-based discrimination in classification tasks. Regarding the geographical context of research, the focus is overwhelming on North America and Europe (Global North Countries), with limited representation from other regions. This raises concerns about overlooking other types of AI applications, their adverse effects on different types of population groups, and the cultural considerations necessary for addressing these problems. With the help of some highlighted works, we advocate why a wider range of topics must be discussed and why domain-, technological, diverse geographical and demographic-specific approaches are needed. This paper also explores the interdisciplinary nature of algorithmic fairness research in law and computer science to gain insight into how researchers from these fields approach the topic independently or in collaboration. By examining this, we can better understand the unique contributions that both disciplines can bring.Abstract

Flow-guided Motion Prediction with Semantics and Dynamic Occupancy Grid Maps

Rabbia Asghar, Wenqian Liu, Lukas Rummelhard, Anne Spalanzani, Christian Laugier

arXiv:2407.15675v1 »Full PDF »

Accepted for publication at the 27th IEEE International Conference on Intelligent Transportation S...

Accurate prediction of driving scenes is essential for road safety and autonomous driving. Occupancy Grid Maps (OGMs) are commonly employed for scene prediction due to their structured spatial representation, flexibility across sensor modalities and integration of uncertainty. Recent studies have successfully combined OGMs with deep learning methods to predict the evolution of scene and learn complex behaviours. These methods, however, do not consider prediction of flow or velocity vectors in the scene. In this work, we propose a novel multi-task framework that leverages dynamic OGMs and semantic information to predict both future vehicle semantic grids and the future flow of the scene. This incorporation of semantic flow not only offers intermediate scene features but also enables the generation of warped semantic grids. Evaluation on the real-world NuScenes dataset demonstrates improved prediction capabilities and enhanced ability of the model to retain dynamic vehicles within the scene.Abstract

Stop! In the Name of Flaws: Disentangling Personal Names and Sociodemographic Attributes in NLP

Vagrant Gautam, Arjun Subramonian, Anne Lauscher, Os Keyes

arXiv:2405.17159v2 »Full PDF »

Gender Bias in Natural Language Processing Workshop at ACL 2024

Personal names simultaneously differentiate individuals and categorize them in ways that are important in a given society. While the natural language processing community has thus associated personal names with sociodemographic characteristics in a variety of tasks, researchers have engaged to varying degrees with the established methodological problems in doing so. To guide future work that uses names and sociodemographic characteristics, we provide an overview of relevant research: first, we present an interdisciplinary background on names and naming. We then survey the issues inherent to associating names with sociodemographic attributes, covering problems of validity (e.g., systematic error, construct validity), as well as ethical concerns (e.g., harms, differential impact, cultural insensitivity). Finally, we provide guiding questions along with normative recommendations to avoid validity and ethical pitfalls when dealing with names and sociodemographic characteristics in natural language processing.Abstract