fairXiv Pronounced fair • kive

16737 latest Fairness/Ethics + ML/AI papers

Imagen 3

Imagen-Team-Google, :, Jason Baldridge, Jakob Bauer, Mukul Bhutani, Nicole Brichtova, Andrew Bunner, Kelvin Chan, Yichang Chen, Sander Dieleman, Yuqing Du, Zach Eaton-Rosen, Hongliang Fei, Nando de Freitas, Yilin Gao, Evgeny Gladchenko, Sergio Gómez Colmenarejo, Mandy Guo, Alex Haig, Will Hawkins, Hexiang Hu, Huilian Huang, Tobenna Peter Igwe, Christos Kaplanis, Siavash Khodadadeh, Yelin Kim, Ksenia Konyushkova, Karol Langner, Eric Lau, Shixin Luo, Soňa Mokrá, Henna Nandwani, Yasumasa Onoe, Aäron van den Oord, Zarana Parekh, Jordi Pont-Tuset, Hang Qi, Rui Qian, Deepak Ramachandran, Poorva Rane, Abdullah Rashwan, Ali Razavi, Robert Riachi, Hansa Srinivasan, Srivatsan Srinivasan, Robin Strudel, Benigno Uria, Oliver Wang, Su Wang, Austin Waters, Chris Wolff, Auriel Wright, Zhisheng Xiao, Hao Xiong, Keyang Xu, Marc van Zee, Junlin Zhang, Katie Zhang, Wenlei Zhou, Konrad Zolna, Ola Aboubakar, Canfer Akbulut, Oscar Akerlund, Isabela Albuquerque, Nina Anderson, Marco Andreetto, Lora Aroyo, Ben Bariach, David Barker, Sherry Ben, Dana Berman, Courtney Biles, Irina Blok, Pankil Botadra, Jenny Brennan, Karla Brown, John Buckley, Rudy Bunel, Elie Bursztein, Christina Butterfield, Ben Caine, Viral Carpenter, Norman Casagrande, Ming-Wei Chang, Solomon Chang, Shamik Chaudhuri, Tony Chen, John Choi, Dmitry Churbanau, Nathan Clement, Matan Cohen, Forrester Cole, Mikhail Dektiarev, Vincent Du, Praneet Dutta, Tom Eccles, Ndidi Elue, Ashley Feden, Shlomi Fruchter, Frankie Garcia, Roopal Garg, Weina Ge, Ahmed Ghazy, Bryant Gipson, Andrew Goodman, Dawid Górny, Sven Gowal, Khyatti Gupta, Yoni Halpern, Yena Han, Susan Hao, Jamie Hayes, Amir Hertz, Ed Hirst, Tingbo Hou, Heidi Howard, Mohamed Ibrahim, Dirichi Ike-Njoku, Joana Iljazi, Vlad Ionescu, William Isaac, Reena Jana, Gemma Jennings, Donovon Jenson, Xuhui Jia, Kerry Jones, Xiaoen Ju, Ivana Kajic, Christos Kaplanis, Burcu Karagol Ayan, Jacob Kelly, Suraj Kothawade, Christina Kouridi, Ira Ktena, Jolanda Kumakaw, Dana Kurniawan, Dmitry Lagun, Lily Lavitas, Jason Lee, Tao Li, Marco Liang, Maggie Li-Calis, Yuchi Liu, Javier Lopez Alberca, Peggy Lu, Kristian Lum, Yukun Ma, Chase Malik, John Mellor, Inbar Mosseri, Tom Murray, Aida Nematzadeh, Paul Nicholas, João Gabriel Oliveira, Guillermo Ortiz-Jimenez, Michela Paganini, Tom Le Paine, Roni Paiss, Alicia Parrish, Anne Peckham, Vikas Peswani, Igor Petrovski, Tobias Pfaff, Alex Pirozhenko, Ryan Poplin, Utsav Prabhu, Yuan Qi, Matthew Rahtz, Cyrus Rashtchian, Charvi Rastogi, Amit Raul, Ali Razavi, Sylvestre-Alvise Rebuffi, Susanna Ricco, Felix Riedel, Dirk Robinson, Pankaj Rohatgi, Bill Rosgen, Sarah Rumbley, Moonkyung Ryu, Anthony Salgado, Sahil Singla, Florian Schroff, Candice Schumann, Tanmay Shah, Brendan Shillingford, Kaushik Shivakumar, Dennis Shtatnov, Zach Singer, Evgeny Sluzhaev, Valerii Sokolov, Thibault Sottiaux, Florian Stimberg, Brad Stone, David Stutz, Yu-Chuan Su, Eric Tabellion, Shuai Tang, David Tao, Kurt Thomas, Gregory Thornton, Andeep Toor, Cristian Udrescu, Aayush Upadhyay, Cristina Vasconcelos, Alex Vasiloff, Andrey Voynov, Amanda Walker, Luyu Wang, Miaosen Wang, Simon Wang, Stanley Wang, Qifei Wang, Yuxiao Wang, Ágoston Weisz, Olivia Wiles, Chenxia Wu, Xingyu Federico Xu, Andrew Xue, Jianbo Yang, Luo Yu, Mete Yurtoglu, Ali Zand, Han Zhang, Jiageng Zhang, Catherine Zhao, Adilet Zhaxybay, Miao Zhou, Shengqi Zhu, Zhenkai Zhu, Dawn Bloxwich, Mahyar Bordbar, Luis C. Cobo, Eli Collins, Shengyang Dai, Tulsee Doshi, Anca Dragan, Douglas Eck, Demis Hassabis, Sissie Hsiao, Tom Hume, Koray Kavukcuoglu, Helen King, Jack Krawczyk, Yeqing Li, Kathy Meier-Hellstern, Andras Orban, Yury Pinsky, Amar Subramanya, Oriol Vinyals, Ting Yu, Yori Zwols

arXiv:2408.07009v1 »Full PDF »
We introduce Imagen 3, a latent diffusion model that generates high quality images from text prompts. We describe our quality and responsibility evaluations. Imagen 3 is preferred over other state-of-the-art (SOTA) models at the time of evaluation. In addition, we discuss issues around safety and representation, as well as methods we used to minimize the potential harm of our models.Abstract

SIESEF-FusionNet: Spatial Inter-correlation Enhancement and Spatially-Embedded Feature Fusion Network for LiDAR Point Cloud Semantic Segmentation

Jiale Chen, Fei Xia, Jianliang Mao, Haoping Wang, Chuanlin Zhang

arXiv:2411.06991v1 »Full PDF »

9 pages, 4 figures

The ambiguity at the boundaries of different semantic classes in point cloud semantic segmentation often leads to incorrect decisions in intelligent perception systems, such as autonomous driving. Hence, accurate delineation of the boundaries is crucial for improving safety in autonomous driving. A novel spatial inter-correlation enhancement and spatially-embedded feature fusion network (SIESEF-FusionNet) is proposed in this paper, enhancing spatial inter-correlation by combining inverse distance weighting and angular compensation to extract more beneficial spatial information without causing redundancy. Meanwhile, a new spatial adaptive pooling module is also designed, embedding enhanced spatial information into semantic features for strengthening the context-awareness of semantic features. Experimental results demonstrate that 83.7% mIoU and 97.8% OA are achieved by SIESEF-FusionNet on the Toronto3D dataset, with performance superior to other baseline methods. A value of 61.1% mIoU is reached on the semanticKITTI dataset, where a marked improvement in segmentation performance is observed. In addition, the effectiveness and plug-and-play capability of the proposed modules are further verified through ablation studies.Abstract

WassFFed: Wasserstein Fair Federated Learning

Zhongxuan Han, Li Zhang, Chaochao Chen, Xiaolin Zheng, Fei Zheng, Yuyuan Li, Jianwei Yin

arXiv:2411.06881v1 »Full PDF »

Submitted to TKDE

Federated Learning (FL) employs a training approach to address scenarios where users' data cannot be shared across clients. Achieving fairness in FL is imperative since training data in FL is inherently geographically distributed among diverse user groups. Existing research on fairness predominantly assumes access to the entire training data, making direct transfer to FL challenging. However, the limited existing research on fairness in FL does not effectively address two key challenges, i.e., (CH1) Current methods fail to deal with the inconsistency between fair optimization results obtained with surrogate functions and fair classification results. (CH2) Directly aggregating local fair models does not always yield a globally fair model due to non Identical and Independent data Distributions (non-IID) among clients. To address these challenges, we propose a Wasserstein Fair Federated Learning framework, namely WassFFed. To tackle CH1, we ensure that the outputs of local models, rather than the loss calculated with surrogate functions or classification results with a threshold, remain independent of various user groups. To resolve CH2, we employ a Wasserstein barycenter calculation of all local models' outputs for each user group, bringing local model outputs closer to the global output distribution to ensure consistency between the global model and local models. We conduct extensive experiments on three real-world datasets, demonstrating that WassFFed outperforms existing approaches in striking a balance between accuracy and fairness.Abstract

From Word Vectors to Multimodal Embeddings: Techniques, Applications, and Future Directions For Large Language Models

Charles Zhang, Benji Peng, Xintian Sun, Qian Niu, Junyu Liu, Keyu Chen, Ming Li, Pohsun Feng, Ziqian Bi, Ming Liu, Yichao Zhang, Cheng Fei, Caitlyn Heqi Yin, Lawrence KQ Yan, Tianyang Wang

arXiv:2411.05036v1 »Full PDF »

21 pages

Word embeddings and language models have transformed natural language processing (NLP) by facilitating the representation of linguistic elements in continuous vector spaces. This review visits foundational concepts such as the distributional hypothesis and contextual similarity, tracing the evolution from sparse representations like one-hot encoding to dense embeddings including Word2Vec, GloVe, and fastText. We examine both static and contextualized embeddings, underscoring advancements in models such as ELMo, BERT, and GPT and their adaptations for cross-lingual and personalized applications. The discussion extends to sentence and document embeddings, covering aggregation methods and generative topic models, along with the application of embeddings in multimodal domains, including vision, robotics, and cognitive science. Advanced topics such as model compression, interpretability, numerical encoding, and bias mitigation are analyzed, addressing both technical challenges and ethical implications. Additionally, we identify future research directions, emphasizing the need for scalable training techniques, enhanced interpretability, and robust grounding in non-textual modalities. By synthesizing current methodologies and emerging trends, this survey offers researchers and practitioners an in-depth resource to push the boundaries of embedding-based language models.Abstract

Deep Learning and Machine Learning -- Natural Language Processing: From Theory to Application

Keyu Chen, Cheng Fei, Ziqian Bi, Junyu Liu, Benji Peng, Sen Zhang, Xuanhe Pan, Jiawei Xu, Jinlang Wang, Caitlyn Heqi Yin, Yichao Zhang, Pohsun Feng, Yizhu Wen, Tianyang Wang, Ming Li, Jintao Ren, Qian Niu, Silin Chen, Weiche Hsieh, Lawrence K. Q. Yan, Chia Xin Liang, Han Xu, Hong-Ming Tseng, Xinyuan Song, Ming Liu

arXiv:2411.05026v1 »Full PDF »

255 pages

With a focus on natural language processing (NLP) and the role of large language models (LLMs), we explore the intersection of machine learning, deep learning, and artificial intelligence. As artificial intelligence continues to revolutionize fields from healthcare to finance, NLP techniques such as tokenization, text classification, and entity recognition are essential for processing and understanding human language. This paper discusses advanced data preprocessing techniques and the use of frameworks like Hugging Face for implementing transformer-based models. Additionally, it highlights challenges such as handling multilingual data, reducing bias, and ensuring model robustness. By addressing key aspects of data processing and model fine-tuning, this work aims to provide insights into deploying effective and ethically sound AI solutions.Abstract

EvoCodeBench: An Evolving Code Generation Benchmark with Domain-Specific Evaluations

Jia Li, Ge Li, Xuanming Zhang, Yunfei Zhao, Yihong Dong, Zhi Jin, Binhua Li, Fei Huang, Yongbin Li

arXiv:2410.22821v1 »Full PDF »

Accepted by the 38th Conference on Neural Information Processing Systems (NeurIPS 2024)

How to evaluate Large Language Models (LLMs) in code generation remains an open question. Existing benchmarks have two limitations - data leakage and lack of domain-specific evaluation. The former hurts the fairness of benchmarks, and the latter hinders practitioners from selecting superior LLMs for specific programming domains. To address these two limitations, we propose a new benchmark - EvoCodeBench, which has the following advances: (1) Evolving data. EvoCodeBench will be dynamically updated every period (e.g., 6 months) to avoid data leakage. This paper releases the first version - EvoCodeBench-2403, containing 275 samples from 25 repositories. (2) A domain taxonomy and domain labels. Based on the statistics of open-source communities, we design a programming domain taxonomy consisting of 10 popular domains. Based on the taxonomy, we annotate each sample in EvoCodeBench with a domain label. (3) Domain-specific evaluations. Besides the Pass@k, we compute the Domain-Specific Improvement (DSI) and define LLMs' comfort and strange domains. These evaluations help practitioners select superior LLMs in specific domains and discover the shortcomings of existing LLMs. We evaluate 8 popular LLMs (e.g., gpt-4, DeepSeek Coder) on EvoCodeBench and summarize some insights. EvoCodeBench reveals the actual abilities of these LLMs in real-world repositories. For example, the highest Pass@1 of gpt-4 on EvoCodeBench-2403 is only 20.74%. Besides, we evaluate LLMs in different domains and discover their comfort and strange domains. For example, gpt-4 performs best in most domains but falls behind others in the Internet domain. StarCoder 2-15B unexpectedly performs well in the Database domain and even outperforms 33B LLMs. EvoCodeBench has been released.Abstract

Evaluating Text-to-Image Generative Models: An Empirical Study on Human Image Synthesis

Muxi Chen, Yi Liu, Jian Yi, Changran Xu, Qiuxia Lai, Hongliang Wang, Tsung-Yi Ho, Qiang Xu

arXiv:2403.05125v2 »Full PDF »
In this paper, we present an empirical study introducing a nuanced evaluation framework for text-to-image (T2I) generative models, applied to human image synthesis. Our framework categorizes evaluations into two distinct groups: first, focusing on image qualities such as aesthetics and realism, and second, examining text conditions through concept coverage and fairness. We introduce an innovative aesthetic score prediction model that assesses the visual appeal of generated images and unveils the first dataset marked with low-quality regions in generated human images to facilitate automatic defect detection. Our exploration into concept coverage probes the model's effectiveness in interpreting and rendering text-based concepts accurately, while our analysis of fairness reveals biases in model outputs, with an emphasis on gender, race, and age. While our study is grounded in human imagery, this dual-faceted approach is designed with the flexibility to be applicable to other forms of image generation, enhancing our understanding of generative models and paving the way to the next generation of more sophisticated, contextually aware, and ethically attuned generative models. Code and data, including the dataset annotated with defective areas, are available at \href{https://github.com/cure-lab/EvaluateAIGC}{https://github.com/cure-lab/EvaluateAIGC}.Abstract

Codev-Bench: How Do LLMs Understand Developer-Centric Code Completion?

Zhenyu Pan, Rongyu Cao, Yongchang Cao, Yingwei Ma, Binhua Li, Fei Huang, Han Liu, Yongbin Li

arXiv:2410.01353v3 »Full PDF »
Code completion, a key downstream task in code generation, is one of the most frequent and impactful methods for enhancing developer productivity in software development. As intelligent completion tools evolve, we need a robust evaluation benchmark that enables meaningful comparisons between products and guides future advancements. However, existing benchmarks focus more on coarse-grained tasks without industrial analysis resembling general code generation rather than the real-world scenarios developers encounter. Moreover, these benchmarks often rely on costly and time-consuming human annotation, and the standalone test cases fail to leverage minimal tests for maximum repository-level understanding and code coverage. To address these limitations, we first analyze business data from an industrial code completion tool and redefine the evaluation criteria to better align with the developer's intent and desired completion behavior throughout the coding process. Based on these insights, we introduce Codev-Agent, an agent-based system that automates repository crawling, constructs execution environments, extracts dynamic calling chains from existing unit tests, and generates new test samples to avoid data leakage, ensuring fair and effective comparisons. Using Codev-Agent, we present the Code-Development Benchmark (Codev-Bench), a fine-grained, real-world, repository-level, and developer-centric evaluation framework. Codev-Bench assesses whether a code completion tool can capture a developer's immediate intent and suggest appropriate code across diverse contexts, providing a more realistic benchmark for code completion in modern software development.Abstract

From Text to Multimodality: Exploring the Evolution and Impact of Large Language Models in Medical Practice

Qian Niu, Keyu Chen, Ming Li, Pohsun Feng, Ziqian Bi, Lawrence KQ Yan, Yichao Zhang, Caitlyn Heqi Yin, Cheng Fei, Junyu Liu, Benji Peng

arXiv:2410.01812v3 »Full PDF »

12 pages, 1 figure

Large Language Models (LLMs) have rapidly evolved from text-based systems to multimodal platforms, significantly impacting various sectors including healthcare. This comprehensive review explores the progression of LLMs to Multimodal Large Language Models (MLLMs) and their growing influence in medical practice. We examine the current landscape of MLLMs in healthcare, analyzing their applications across clinical decision support, medical imaging, patient engagement, and research. The review highlights the unique capabilities of MLLMs in integrating diverse data types, such as text, images, and audio, to provide more comprehensive insights into patient health. We also address the challenges facing MLLM implementation, including data limitations, technical hurdles, and ethical considerations. By identifying key research gaps, this paper aims to guide future investigations in areas such as dataset development, modality alignment methods, and the establishment of ethical guidelines. As MLLMs continue to shape the future of healthcare, understanding their potential and limitations is crucial for their responsible and effective integration into medical practice.Abstract

Causality for Large Language Models

Anpeng Wu, Kun Kuang, Minqin Zhu, Yingrong Wang, Yujia Zheng, Kairong Han, Baohong Li, Guangyi Chen, Fei Wu, Kun Zhang

arXiv:2410.15319v1 »Full PDF »
Recent breakthroughs in artificial intelligence have driven a paradigm shift, where large language models (LLMs) with billions or trillions of parameters are trained on vast datasets, achieving unprecedented success across a series of language tasks. However, despite these successes, LLMs still rely on probabilistic modeling, which often captures spurious correlations rooted in linguistic patterns and social stereotypes, rather than the true causal relationships between entities and events. This limitation renders LLMs vulnerable to issues such as demographic biases, social stereotypes, and LLM hallucinations. These challenges highlight the urgent need to integrate causality into LLMs, moving beyond correlation-driven paradigms to build more reliable and ethically aligned AI systems. While many existing surveys and studies focus on utilizing prompt engineering to activate LLMs for causal knowledge or developing benchmarks to assess their causal reasoning abilities, most of these efforts rely on human intervention to activate pre-trained models. How to embed causality into the training process of LLMs and build more general and intelligent models remains unexplored. Recent research highlights that LLMs function as causal parrots, capable of reciting causal knowledge without truly understanding or applying it. These prompt-based methods are still limited to human interventional improvements. This survey aims to address this gap by exploring how causality can enhance LLMs at every stage of their lifecycle-from token embedding learning and foundation model training to fine-tuning, alignment, inference, and evaluation-paving the way for more interpretable, reliable, and causally-informed models. Additionally, we further outline six promising future directions to advance LLM development, enhance their causal reasoning capabilities, and address the current limitations these models face.Abstract