fairXiv Pronounced fair • kive

16737 latest Fairness/Ethics + ML/AI papers

A Primer on Word Embeddings: AI Techniques for Text Analysis in Social Work

Brian E. Perron, Kelley A. Rivenburgh, Bryan G. Victor, Zia Qi, Hui Luan

arXiv:2411.07156v1 »Full PDF »

37 pages, 3 figures

Word embeddings represent a transformative technology for analyzing text data in social work research, offering sophisticated tools for understanding case notes, policy documents, research literature, and other text-based materials. This methodological paper introduces word embeddings to social work researchers, explaining how these mathematical representations capture meaning and relationships in text data more effectively than traditional keyword-based approaches. We discuss fundamental concepts, technical foundations, and practical applications, including semantic search, clustering, and retrieval augmented generation. The paper demonstrates how embeddings can enhance research workflows through concrete examples from social work practice, such as analyzing case notes for housing instability patterns and comparing social work licensing examinations across languages. While highlighting the potential of embeddings for advancing social work research, we acknowledge limitations including information loss, training data constraints, and potential biases. We conclude that successfully implementing embedding technologies in social work requires developing domain-specific models, creating accessible tools, and establishing best practices aligned with social work's ethical principles. This integration can enhance our ability to analyze complex patterns in text data while supporting more effective services and interventions.Abstract

Neuro-Symbolic AI: Explainability, Challenges, and Future Trends

Xin Zhang, Victor S. Sheng

arXiv:2411.04383v1 »Full PDF »
Explainability is an essential reason limiting the application of neural networks in many vital fields. Although neuro-symbolic AI hopes to enhance the overall explainability by leveraging the transparency of symbolic learning, the results are less evident than imagined. This article proposes a classification for explainability by considering both model design and behavior of 191 studies from 2013, focusing on neuro-symbolic AI, hoping to inspire scholars who want to understand the explainability of neuro-symbolic AI. Precisely, we classify them into five categories by considering whether the form of bridging the representation differences is readable as their design factor, if there are representation differences between neural networks and symbolic logic learning, and whether a model decision or prediction process is understandable as their behavior factor: implicit intermediate representations and implicit prediction, partially explicit intermediate representations and partially explicit prediction, explicit intermediate representations or explicit prediction, explicit intermediate representation and explicit prediction, unified representation and explicit prediction. We also analyzed the research trends and three significant challenges: unified representations, explainability and transparency, and sufficient cooperation from neural networks and symbolic learning. Finally, we put forward suggestions for future research in three aspects: unified representations, enhancing model explainability, ethical considerations, and social impact.Abstract

GLBench: A Comprehensive Benchmark for Graph with Large Language Models

Yuhan Li, Peisong Wang, Xiao Zhu, Aochuan Chen, Haiyun Jiang, Deng Cai, Victor Wai Kin Chan, Jia Li

arXiv:2407.07457v4 »Full PDF »
The emergence of large language models (LLMs) has revolutionized the way we interact with graphs, leading to a new paradigm called GraphLLM. Despite the rapid development of GraphLLM methods in recent years, the progress and understanding of this field remain unclear due to the lack of a benchmark with consistent experimental protocols. To bridge this gap, we introduce GLBench, the first comprehensive benchmark for evaluating GraphLLM methods in both supervised and zero-shot scenarios. GLBench provides a fair and thorough evaluation of different categories of GraphLLM methods, along with traditional baselines such as graph neural networks. Through extensive experiments on a collection of real-world datasets with consistent data processing and splitting strategies, we have uncovered several key findings. Firstly, GraphLLM methods outperform traditional baselines in supervised settings, with LLM-as-enhancers showing the most robust performance. However, using LLMs as predictors is less effective and often leads to uncontrollable output issues. We also notice that no clear scaling laws exist for current GraphLLM methods. In addition, both structures and semantics are crucial for effective zero-shot transfer, and our proposed simple baseline can even outperform several models tailored for zero-shot scenarios. The data and code of the benchmark can be found at https://github.com/NineAbyss/GLBench.Abstract

Verifying Non-friendly Formal Verification Designs: Can We Start Earlier?

Bryan Olmos, Daniel Gerl, Aman Kumar, Djones Lettnin

arXiv:2410.18454v1 »Full PDF »

Published in DVCon Europe 2024

The design of Systems on Chips (SoCs) is becoming more and more complex due to technological advancements. Missed bugs can cause drastic failures in safety-critical environments leading to the endangerment of lives. To overcome these drastic failures, formal property verification (FPV) has been applied in the industry. However, there exist multiple hardware designs where the results of FPV are not conclusive even for long runtimes of model-checking tools. For this reason, the use of High-level Equivalence Checking (HLEC) tools has been proposed in the last few years. However, the procedure for how to use it inside an industrial toolchain has not been defined. For this reason, we proposed an automated methodology based on metamodeling techniques which consist of two main steps. First, an untimed algorithmic description written in C++ is verified in an early stage using generated assertions; the advantage of this step is that the assertions at the software level run in seconds and we can start our analysis with conclusive results about our algorithm before starting to write the RTL (Register Transfer Level) design. Second, this algorithmic description is verified against its sequential design using HLEC and the respective metamodel parameters. The results show that the presented methodology can find bugs early related to the algorithmic description and prepare the setup for the HLEC verification. This helps to reduce the verification efforts to set up the tool and write the properties manually which is always error-prone. The proposed framework can help teams working on datapaths to verify and make decisions in an early stage of the verification flow.Abstract

Acoustic Model Optimization over Multiple Data Sources: Merging and Valuation

Victor Junqiu Wei, Weicheng Wang, Di Jiang, Conghui Tan, Rongzhong Lian

arXiv:2410.15620v1 »Full PDF »
Due to the rising awareness of privacy protection and the voluminous scale of speech data, it is becoming infeasible for Automatic Speech Recognition (ASR) system developers to train the acoustic model with complete data as before. For example, the data may be owned by different curators, and it is not allowed to share with others. In this paper, we propose a novel paradigm to solve salient problems plaguing the ASR field. In the first stage, multiple acoustic models are trained based upon different subsets of the complete speech data, while in the second phase, two novel algorithms are utilized to generate a high-quality acoustic model based upon those trained on data subsets. We first propose the Genetic Merge Algorithm (GMA), which is a highly specialized algorithm for optimizing acoustic models but suffers from low efficiency. We further propose the SGD-Based Optimizational Merge Algorithm (SOMA), which effectively alleviates the efficiency bottleneck of GMA and maintains superior model accuracy. Extensive experiments on public data show that the proposed methods can significantly outperform the state-of-the-art. Furthermore, we introduce Shapley Value to estimate the contribution score of the trained models, which is useful for evaluating the effectiveness of the data and providing fair incentives to their curators.Abstract

The Politics of Fear and the Experience of Bangladeshi Religious Minority Communities Using Social Media Platforms

Mohammad Rashidujjaman Rifat, Dipto Das, Arpon Podder, Mahiratul Jannat, Robert Soden, Bryan Semaan, Syed Ishtiaque Ahmed

arXiv:2410.15207v1 »Full PDF »

accepted at CSCW24

Despite significant research on online harm, polarization, public deliberation, and justice, CSCW still lacks a comprehensive understanding of the experiences of religious minorities, particularly in relation to fear, as prominently evident in our study. Gaining faith-sensitive insights into the expression, participation, and inter-religious interactions on social media can contribute to CSCW's literature on online safety and interfaith communication. In pursuit of this goal, we conducted a six-month-long, interview-based study with the Hindu, Buddhist, and Indigenous communities in Bangladesh. Our study draws on an extensive body of research encompassing the spiral of silence, the cultural politics of fear, and communication accommodation to examine how social media use by religious minorities is influenced by fear, which is associated with social conformity, misinformation, stigma, stereotypes, and South Asian postcolonial memory. Moreover, we engage with scholarly perspectives from religious studies, justice, and South Asian violence and offer important critical insights and design lessons for the CSCW literature on public deliberation, justice, and interfaith communication.Abstract

DreamSat: Towards a General 3D Model for Novel View Synthesis of Space Objects

Nidhi Mathihalli, Audrey Wei, Giovanni Lavezzi, Peng Mun Siew, Victor Rodriguez-Fernandez, Hodei Urrutxua, Richard Linares

arXiv:2410.05097v1 »Full PDF »

Presented at the 75th International Astronautical Congress, October 2024, Milan, Italy

Novel view synthesis (NVS) enables to generate new images of a scene or convert a set of 2D images into a comprehensive 3D model. In the context of Space Domain Awareness, since space is becoming increasingly congested, NVS can accurately map space objects and debris, improving the safety and efficiency of space operations. Similarly, in Rendezvous and Proximity Operations missions, 3D models can provide details about a target object's shape, size, and orientation, allowing for better planning and prediction of the target's behavior. In this work, we explore the generalization abilities of these reconstruction techniques, aiming to avoid the necessity of retraining for each new scene, by presenting a novel approach to 3D spacecraft reconstruction from single-view images, DreamSat, by fine-tuning the Zero123 XL, a state-of-the-art single-view reconstruction model, on a high-quality dataset of 190 high-quality spacecraft models and integrating it into the DreamGaussian framework. We demonstrate consistent improvements in reconstruction quality across multiple metrics, including Contrastive Language-Image Pretraining (CLIP) score (+0.33%), Peak Signal-to-Noise Ratio (PSNR) (+2.53%), Structural Similarity Index (SSIM) (+2.38%), and Learned Perceptual Image Patch Similarity (LPIPS) (+0.16%) on a test set of 30 previously unseen spacecraft images. Our method addresses the lack of domain-specific 3D reconstruction tools in the space industry by leveraging state-of-the-art diffusion models and 3D Gaussian splatting techniques. This approach maintains the efficiency of the DreamGaussian framework while enhancing the accuracy and detail of spacecraft reconstructions. The code for this work can be accessed on GitHub (https://github.com/ARCLab-MIT/space-nvs).Abstract

Precision Knowledge Editing: Enhancing Safety in Large Language Models

Xuying Li, Zhuo Li, Yuji Kosuga, Yasuhiro Yoshida, Victor Bian

arXiv:2410.03772v1 »Full PDF »
Large language models (LLMs) have demonstrated remarkable capabilities, but they also pose risks related to the generation of toxic or harmful content. This work introduces Precision Knowledge Editing (PKE), an advanced technique that builds upon existing knowledge editing methods to more effectively identify and modify toxic parameter regions within LLMs. By leveraging neuron weight tracking and activation pathway tracing, PKE achieves finer granularity in toxic content management compared to previous methods like Detoxifying Instance Neuron Modification (DINM). Our experiments demonstrate that PKE significantly reduces the attack success rate (ASR) across various models, including Llama2-7b and Llama-3-8b-instruct, while maintaining overall model performance. Additionally, we also compared the performance of some closed-source models (gpt-4-0613 and Claude 3 Sonnet) in our experiments, and found that models adjusted using our method far outperformed the closed-source models in terms of safety. This research contributes to the ongoing efforts to make LLMs safer and more reliable for real-world applications.Abstract

Privacy in Large Language Models: Attacks, Defenses and Future Directions

Haoran Li, Yulin Chen, Jinglong Luo, Jiecong Wang, Hao Peng, Yan Kang, Xiaojin Zhang, Qi Hu, Chunkit Chan, Zenglin Xu, Bryan Hooi, Yangqiu Song

arXiv:2310.10383v2 »Full PDF »

We upload the survey to cover more recent papers and inlcude privacy resaearch on multi-modality

The advancement of large language models (LLMs) has significantly enhanced the ability to effectively tackle various downstream NLP tasks and unify these tasks into generative pipelines. On the one hand, powerful language models, trained on massive textual data, have brought unparalleled accessibility and usability for both models and users. On the other hand, unrestricted access to these models can also introduce potential malicious and unintentional privacy risks. Despite ongoing efforts to address the safety and privacy concerns associated with LLMs, the problem remains unresolved. In this paper, we provide a comprehensive analysis of the current privacy attacks targeting LLMs and categorize them according to the adversary's assumed capabilities to shed light on the potential vulnerabilities present in LLMs. Then, we present a detailed overview of prominent defense strategies that have been developed to counter these privacy attacks. Beyond existing works, we identify upcoming privacy concerns as LLMs evolve. Lastly, we point out several potential avenues for future exploration.Abstract

The Responsible Foundation Model Development Cheatsheet: A Review of Tools & Resources

Shayne Longpre, Stella Biderman, Alon Albalak, Hailey Schoelkopf, Daniel McDuff, Sayash Kapoor, Kevin Klyman, Kyle Lo, Gabriel Ilharco, Nay San, Maribeth Rauh, Aviya Skowron, Bertie Vidgen, Laura Weidinger, Arvind Narayanan, Victor Sanh, David Adelani, Percy Liang, Rishi Bommasani, Peter Henderson, Sasha Luccioni, Yacine Jernite, Luca Soldaini

arXiv:2406.16746v3 »Full PDF »
Foundation model development attracts a rapidly expanding body of contributors, scientists, and applications. To help shape responsible development practices, we introduce the Foundation Model Development Cheatsheet: a growing collection of 250+ tools and resources spanning text, vision, and speech modalities. We draw on a large body of prior work to survey resources (e.g. software, documentation, frameworks, guides, and practical tools) that support informed data selection, processing, and understanding, precise and limitation-aware artifact documentation, efficient model training, advance awareness of the environmental impact from training, careful model evaluation of capabilities, risks, and claims, as well as responsible model release, licensing and deployment practices. We hope this curated collection of resources helps guide more responsible development. The process of curating this list, enabled us to review the AI development ecosystem, revealing what tools are critically missing, misused, or over-used in existing practices. We find that (i) tools for data sourcing, model evaluation, and monitoring are critically under-serving ethical and real-world needs, (ii) evaluations for model safety, capabilities, and environmental impact all lack reproducibility and transparency, (iii) text and particularly English-centric analyses continue to dominate over multilingual and multi-modal analyses, and (iv) evaluation of systems, rather than just models, is needed so that capabilities and impact are assessed in context.Abstract