fairXiv Pronounced fair • kive

16737 latest Fairness/Ethics + ML/AI papers

IGL-Bench: Establishing the Comprehensive Benchmark for Imbalanced Graph Learning

Jiawen Qin, Haonan Yuan, Qingyun Sun, Lyujin Xu, Jiaqi Yuan, Pengfeng Huang, Zhaonan Wang, Xingcheng Fu, Hao Peng, Jianxin Li, Philip S. Yu

arXiv:2406.09870v2 »Full PDF »

The Thirty-eight Conference on Neural Information Processing Systems Datasets and Benchmarks Track...

Deep graph learning has gained grand popularity over the past years due to its versatility and success in representing graph data across a wide range of domains. However, the pervasive issue of imbalanced graph data distributions, where certain parts exhibit disproportionally abundant data while others remain sparse, undermines the efficacy of conventional graph learning algorithms, leading to biased outcomes. To address this challenge, Imbalanced Graph Learning (IGL) has garnered substantial attention, enabling more balanced data distributions and better task performance. Despite the proliferation of IGL algorithms, the absence of consistent experimental protocols and fair performance comparisons pose a significant barrier to comprehending advancements in this field. To bridge this gap, we introduce IGL-Bench, a foundational comprehensive benchmark for imbalanced graph learning, embarking on 16 diverse graph datasets and 24 distinct IGL algorithms with uniform data processing and splitting strategies. Specifically, IGL-Bench systematically investigates state-of-the-art IGL algorithms in terms of effectiveness, robustness, and efficiency on node-level and graph-level tasks, with the scope of class-imbalance and topology-imbalance. Extensive experiments demonstrate the potential benefits of IGL algorithms on various imbalanced conditions, offering insights and opportunities in the IGL field. Further, we have developed an open-sourced and unified package to facilitate reproducible evaluation and inspire further innovative research, which is available at https://github.com/RingBDStack/IGL-Bench.Abstract

BehaviorGPT: Smart Agent Simulation for Autonomous Driving with Next-Patch Prediction

Zikang Zhou, Haibo Hu, Xinhong Chen, Jianping Wang, Nan Guan, Kui Wu, Yung-Hui Li, Yu-Kai Huang, Chun Jason Xue

arXiv:2405.17372v3 »Full PDF »

NeurIPS 2024

Simulating realistic behaviors of traffic agents is pivotal for efficiently validating the safety of autonomous driving systems. Existing data-driven simulators primarily use an encoder-decoder architecture to encode the historical trajectories before decoding the future. However, the heterogeneity between encoders and decoders complicates the models, and the manual separation of historical and future trajectories leads to low data utilization. Given these limitations, we propose BehaviorGPT, a homogeneous and fully autoregressive Transformer designed to simulate the sequential behavior of multiple agents. Crucially, our approach discards the traditional separation between "history" and "future" by modeling each time step as the "current" one for motion generation, leading to a simpler, more parameter- and data-efficient agent simulator. We further introduce the Next-Patch Prediction Paradigm (NP3) to mitigate the negative effects of autoregressive modeling, in which models are trained to reason at the patch level of trajectories and capture long-range spatial-temporal interactions. Despite having merely 3M model parameters, BehaviorGPT won first place in the 2024 Waymo Open Sim Agents Challenge with a realism score of 0.7473 and a minADE score of 1.4147, demonstrating its exceptional performance in traffic agent simulation.Abstract

LongSafetyBench: Long-Context LLMs Struggle with Safety Issues

Mianqiu Huang, Xiaoran Liu, Shaojun Zhou, Mozhi Zhang, Chenkun Tan, Pengyu Wang, Qipeng Guo, Zhe Xu, Linyang Li, Zhikai Lei, Linlin Li, Qun Liu, Yaqian Zhou, Xipeng Qiu, Xuanjing Huang

arXiv:2411.06899v1 »Full PDF »
With the development of large language models (LLMs), the sequence length of these models continues to increase, drawing significant attention to long-context language models. However, the evaluation of these models has been primarily limited to their capabilities, with a lack of research focusing on their safety. Existing work, such as ManyShotJailbreak, has to some extent demonstrated that long-context language models can exhibit safety concerns. However, the methods used are limited and lack comprehensiveness. In response, we introduce \textbf{LongSafetyBench}, the first benchmark designed to objectively and comprehensively evaluate the safety of long-context models. LongSafetyBench consists of 10 task categories, with an average length of 41,889 words. After testing eight long-context language models on LongSafetyBench, we found that existing models generally exhibit insufficient safety capabilities. The proportion of safe responses from most mainstream long-context LLMs is below 50\%. Moreover, models' safety performance in long-context scenarios does not always align with that in short-context scenarios. Further investigation revealed that long-context models tend to overlook harmful content within lengthy texts. We also proposed a simple yet effective solution, allowing open-source models to achieve performance comparable to that of top-tier closed-source models. We believe that LongSafetyBench can serve as a valuable benchmark for evaluating the safety capabilities of long-context language models. We hope that our work will encourage the broader community to pay attention to the safety of long-context models and contribute to the development of solutions to improve the safety of long-context LLMs.Abstract

OpenCoder: The Open Cookbook for Top-Tier Code Large Language Models

Siming Huang, Tianhao Cheng, J. K. Liu, Jiaran Hao, Liuyihan Song, Yang Xu, J. Yang, J. H. Liu, Chenchen Zhang, Linzheng Chai, Ruifeng Yuan, Zhaoxiang Zhang, Jie Fu, Qian Liu, Ge Zhang, Zili Wang, Yuan Qi, Yinghui Xu, Wei Chu

arXiv:2411.04905v2 »Full PDF »
Large language models (LLMs) for code have become indispensable in various domains, including code generation, reasoning tasks and agent systems. While open-access code LLMs are increasingly approaching the performance levels of proprietary models, high-quality code LLMs suitable for rigorous scientific investigation, particularly those with reproducible data processing pipelines and transparent training protocols, remain limited. The scarcity is due to various challenges, including resource constraints, ethical considerations, and the competitive advantages of keeping models advanced. To address the gap, we introduce OpenCoder, a top-tier code LLM that not only achieves performance comparable to leading models but also serves as an "open cookbook" for the research community. Unlike most prior efforts, we release not only model weights and inference code, but also the reproducible training data, complete data processing pipeline, rigorous experimental ablation results, and detailed training protocols for open scientific research. Through this comprehensive release, we identify the key ingredients for building a top-tier code LLM: (1) code optimized heuristic rules for data cleaning and methods for data deduplication, (2) recall of text corpus related to code and (3) high-quality synthetic data in both annealing and supervised fine-tuning stages. By offering this level of openness, we aim to broaden access to all aspects of a top-tier code LLM, with OpenCoder serving as both a powerful model and an open foundation to accelerate research, and enable reproducible advancements in code AI.Abstract

An Adversarial Perspective on Machine Unlearning for AI Safety

Jakub Łucki, Boyi Wei, Yangsibo Huang, Peter Henderson, Florian Tramèr, Javier Rando

arXiv:2409.18025v3 »Full PDF »

Spotlight paper at Neurips 2024 SoLaR workshop

Large language models are finetuned to refuse questions about hazardous knowledge, but these protections can often be bypassed. Unlearning methods aim at completely removing hazardous capabilities from models and make them inaccessible to adversaries. This work challenges the fundamental differences between unlearning and traditional safety post-training from an adversarial perspective. We demonstrate that existing jailbreak methods, previously reported as ineffective against unlearning, can be successful when applied carefully. Furthermore, we develop a variety of adaptive methods that recover most supposedly unlearned capabilities. For instance, we show that finetuning on 10 unrelated examples or removing specific directions in the activation space can recover most hazardous capabilities for models edited with RMU, a state-of-the-art unlearning method. Our findings challenge the robustness of current unlearning approaches and question their advantages over safety training.Abstract

Integrating Object Detection Modality into Visual Language Model for Enhanced Autonomous Driving Agent

Linfeng He, Yiming Sun, Sihao Wu, Jiaxu Liu, Xiaowei Huang

arXiv:2411.05898v1 »Full PDF »

accepted by SafeGenAI workshop of NeurIPS 2024

In this paper, we propose a novel framework for enhancing visual comprehension in autonomous driving systems by integrating visual language models (VLMs) with additional visual perception module specialised in object detection. We extend the Llama-Adapter architecture by incorporating a YOLOS-based detection network alongside the CLIP perception network, addressing limitations in object detection and localisation. Our approach introduces camera ID-separators to improve multi-view processing, crucial for comprehensive environmental awareness. Experiments on the DriveLM visual question answering challenge demonstrate significant improvements over baseline models, with enhanced performance in ChatGPT scores, BLEU scores, and CIDEr metrics, indicating closeness of model answer to ground truth. Our method represents a promising step towards more capable and interpretable autonomous driving systems. Possible safety enhancement enabled by detection modality is also discussed.Abstract

When AI Eats Itself: On the Caveats of AI Autophagy

Xiaodan Xing, Fadong Shi, Jiahao Huang, Yinzhe Wu, Yang Nan, Sheng Zhang, Yingying Fang, Mike Roberts, Carola-Bibiane Schönlieb, Javier Del Ser, Guang Yang

arXiv:2405.09597v3 »Full PDF »
Generative Artificial Intelligence (AI) technologies and large models are producing realistic outputs across various domains, such as images, text, speech, and music. Creating these advanced generative models requires significant resources, particularly large and high-quality datasets. To minimise training expenses, many algorithm developers use data created by the models themselves as a cost-effective training solution. However, not all synthetic data effectively improve model performance, necessitating a strategic balance in the use of real versus synthetic data to optimise outcomes. Currently, the previously well-controlled integration of real and synthetic data is becoming uncontrollable. The widespread and unregulated dissemination of synthetic data online leads to the contamination of datasets traditionally compiled through web scraping, now mixed with unlabeled synthetic data. This trend, known as the AI autophagy phenomenon, suggests a future where generative AI systems may increasingly consume their own outputs without discernment, raising concerns about model performance, reliability, and ethical implications. What will happen if generative AI continuously consumes itself without discernment? What measures can we take to mitigate the potential adverse effects? To address these research questions, this study examines the existing literature, delving into the consequences of AI autophagy, analyzing the associated risks, and exploring strategies to mitigate its impact. Our aim is to provide a comprehensive perspective on this phenomenon advocating for a balanced approach that promotes the sustainable development of generative AI technologies in the era of large models.Abstract

STAND-Guard: A Small Task-Adaptive Content Moderation Model

Minjia Wang, Pingping Lin, Siqi Cai, Shengnan An, Shengjie Ma, Zeqi Lin, Congrui Huang, Bixiong Xu

arXiv:2411.05214v1 »Full PDF »

20 pages, 1 figure

Content moderation, the process of reviewing and monitoring the safety of generated content, is important for development of welcoming online platforms and responsible large language models. Content moderation contains various tasks, each with its unique requirements tailored to specific scenarios. Therefore, it is crucial to develop a model that can be easily adapted to novel or customized content moderation tasks accurately without extensive model tuning. This paper presents STAND-GUARD, a Small Task-Adaptive coNtent moDeration model. The basic motivation is: by performing instruct tuning on various content moderation tasks, we can unleash the power of small language models (SLMs) on unseen (out-of-distribution) content moderation tasks. We also carefully study the effects of training tasks and model size on the efficacy of cross-task fine-tuning mechanism. Experiments demonstrate STAND-Guard is comparable to GPT-3.5-Turbo across over 40 public datasets, as well as proprietary datasets derived from real-world business scenarios. Remarkably, STAND-Guard achieved nearly equivalent results to GPT-4-Turbo on unseen English binary classification tasksAbstract

A multi-purpose automatic editing system based on lecture semantics for remote education

Panwen Hu, Rui Huang

arXiv:2411.04859v1 »Full PDF »
Remote teaching has become popular recently due to its convenience and safety, especially under extreme circumstances like a pandemic. However, online students usually have a poor experience since the information acquired from the views provided by the broadcast platforms is limited. One potential solution is to show more camera views simultaneously, but it is technically challenging and distracting for the viewers. Therefore, an automatic multi-camera directing/editing system, which aims at selecting the most concerned view at each time instance to guide the attention of online students, is in urgent demand. However, existing systems mostly make simple assumptions and focus on tracking the position of the speaker instead of the real lecture semantics, and therefore have limited capacities to deliver optimal information flow. To this end, this paper proposes an automatic multi-purpose editing system based on the lecture semantics, which can both direct the multiple video streams for real-time broadcasting and edit the optimal video offline for review purposes. Our system directs the views by semantically analyzing the class events while following the professional directing rules, mimicking a human director to capture the regions of interest from the viewpoint of the onsite students. We conduct both qualitative and quantitative analyses to verify the effectiveness of the proposed system and its components.Abstract

A Comparative Study of Deep Reinforcement Learning for Crop Production Management

Joseph Balderas, Dong Chen, Yanbo Huang, Li Wang, Ren-Cang Li

arXiv:2411.04106v1 »Full PDF »

10 pages

Crop production management is essential for optimizing yield and minimizing a field's environmental impact to crop fields, yet it remains challenging due to the complex and stochastic processes involved. Recently, researchers have turned to machine learning to address these complexities. Specifically, reinforcement learning (RL), a cutting-edge approach designed to learn optimal decision-making strategies through trial and error in dynamic environments, has emerged as a promising tool for developing adaptive crop management policies. RL models aim to optimize long-term rewards by continuously interacting with the environment, making them well-suited for tackling the uncertainties and variability inherent in crop management. Studies have shown that RL can generate crop management policies that compete with, and even outperform, expert-designed policies within simulation-based crop models. In the gym-DSSAT crop model environment, one of the most widely used simulators for crop management, proximal policy optimization (PPO) and deep Q-networks (DQN) have shown promising results. However, these methods have not yet been systematically evaluated under identical conditions. In this study, we evaluated PPO and DQN against static baseline policies across three different RL tasks, fertilization, irrigation, and mixed management, provided by the gym-DSSAT environment. To ensure a fair comparison, we used consistent default parameters, identical reward functions, and the same environment settings. Our results indicate that PPO outperforms DQN in fertilization and irrigation tasks, while DQN excels in the mixed management task. This comparative analysis provides critical insights into the strengths and limitations of each approach, advancing the development of more effective RL-based crop management strategies.Abstract